Cargando…
Machine Learning Methods to Evaluate the Depression Status of Chinese Recruits: A Diagnostic Study
PURPOSE: Traditional questionnaires assessing the severity of depression are limited and might not be appropriate for military personnel. We intend to explore the diagnostic ability of three machine learning methods for evaluating the depression status of Chinese recruits, using the Chinese version...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Dove
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7669500/ https://www.ncbi.nlm.nih.gov/pubmed/33209029 http://dx.doi.org/10.2147/NDT.S275620 |
_version_ | 1783610585072533504 |
---|---|
author | Zhao, Mengxue Feng, Zhengzhi |
author_facet | Zhao, Mengxue Feng, Zhengzhi |
author_sort | Zhao, Mengxue |
collection | PubMed |
description | PURPOSE: Traditional questionnaires assessing the severity of depression are limited and might not be appropriate for military personnel. We intend to explore the diagnostic ability of three machine learning methods for evaluating the depression status of Chinese recruits, using the Chinese version of Beck Depression Inventory-II (BDI-II) as the standard. PATIENTS AND METHODS: Our diagnostic study was carried out in Luoyang City (Henan Province, China; 10/16/2018–12/10/2018) with a sample of 1000 Chinese male recruits selected using cluster convenient sampling. All participants completed the BDI and 3 questionnaires including the data of demographics, military careers and 18 factors. The participants were randomly selected as the training set and the testing at 2:1. The machine learning methods tested for assessing the presence or absence of depression status were neural network (NN), support vector machine (SVM), and decision tree (DT). RESULTS: A total of 1000 participants completed the questionnaires, with 223 reporting depression status and 777 not. The highest sensitivity was observed for DT (94.1%), followed by SVM (93.4%) and NN (93.1%). The highest specificity was observed for NN (60.0%), followed by SVM (58.8%) and DT (43.3%). The area under the curve (AUC) of the SVM was the largest (0.862) compared with NN (0.860) and DT (0.734). The regression prediction error and error volatility of the SVM were the smallest. CONCLUSION: The SVM has the smallest prediction error and error volatility, as well as the largest AUC compared with NN and DT for assessing the presence or absence of depression status in Chinese recruits. |
format | Online Article Text |
id | pubmed-7669500 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Dove |
record_format | MEDLINE/PubMed |
spelling | pubmed-76695002020-11-17 Machine Learning Methods to Evaluate the Depression Status of Chinese Recruits: A Diagnostic Study Zhao, Mengxue Feng, Zhengzhi Neuropsychiatr Dis Treat Original Research PURPOSE: Traditional questionnaires assessing the severity of depression are limited and might not be appropriate for military personnel. We intend to explore the diagnostic ability of three machine learning methods for evaluating the depression status of Chinese recruits, using the Chinese version of Beck Depression Inventory-II (BDI-II) as the standard. PATIENTS AND METHODS: Our diagnostic study was carried out in Luoyang City (Henan Province, China; 10/16/2018–12/10/2018) with a sample of 1000 Chinese male recruits selected using cluster convenient sampling. All participants completed the BDI and 3 questionnaires including the data of demographics, military careers and 18 factors. The participants were randomly selected as the training set and the testing at 2:1. The machine learning methods tested for assessing the presence or absence of depression status were neural network (NN), support vector machine (SVM), and decision tree (DT). RESULTS: A total of 1000 participants completed the questionnaires, with 223 reporting depression status and 777 not. The highest sensitivity was observed for DT (94.1%), followed by SVM (93.4%) and NN (93.1%). The highest specificity was observed for NN (60.0%), followed by SVM (58.8%) and DT (43.3%). The area under the curve (AUC) of the SVM was the largest (0.862) compared with NN (0.860) and DT (0.734). The regression prediction error and error volatility of the SVM were the smallest. CONCLUSION: The SVM has the smallest prediction error and error volatility, as well as the largest AUC compared with NN and DT for assessing the presence or absence of depression status in Chinese recruits. Dove 2020-11-12 /pmc/articles/PMC7669500/ /pubmed/33209029 http://dx.doi.org/10.2147/NDT.S275620 Text en © 2020 Zhao and Feng. http://creativecommons.org/licenses/by-nc/3.0/ This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License (http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms (https://www.dovepress.com/terms.php). |
spellingShingle | Original Research Zhao, Mengxue Feng, Zhengzhi Machine Learning Methods to Evaluate the Depression Status of Chinese Recruits: A Diagnostic Study |
title | Machine Learning Methods to Evaluate the Depression Status of Chinese Recruits: A Diagnostic Study |
title_full | Machine Learning Methods to Evaluate the Depression Status of Chinese Recruits: A Diagnostic Study |
title_fullStr | Machine Learning Methods to Evaluate the Depression Status of Chinese Recruits: A Diagnostic Study |
title_full_unstemmed | Machine Learning Methods to Evaluate the Depression Status of Chinese Recruits: A Diagnostic Study |
title_short | Machine Learning Methods to Evaluate the Depression Status of Chinese Recruits: A Diagnostic Study |
title_sort | machine learning methods to evaluate the depression status of chinese recruits: a diagnostic study |
topic | Original Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7669500/ https://www.ncbi.nlm.nih.gov/pubmed/33209029 http://dx.doi.org/10.2147/NDT.S275620 |
work_keys_str_mv | AT zhaomengxue machinelearningmethodstoevaluatethedepressionstatusofchineserecruitsadiagnosticstudy AT fengzhengzhi machinelearningmethodstoevaluatethedepressionstatusofchineserecruitsadiagnosticstudy |