Cargando…
Machine Learning Classification Identifies Cerebellar Contributions to Early and Moderate Cognitive Decline in Alzheimer’s Disease
Alzheimer’s disease (AD) is one of the most common forms of dementia, marked by progressively degrading cognitive function. Although cerebellar changes occur throughout AD progression, its involvement and predictive contribution in its earliest stages, as well as gray or white matter components invo...
Autores principales: | Bruchhage, Muriel M. K., Correia, Stephen, Malloy, Paul, Salloway, Stephen, Deoni, Sean |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7669549/ https://www.ncbi.nlm.nih.gov/pubmed/33240072 http://dx.doi.org/10.3389/fnagi.2020.524024 |
Ejemplares similares
-
Adding cognition to AT(N) models improves prediction of cognitive and functional decline
por: O'Shea, Deirdre M., et al.
Publicado: (2021) -
Functional connectivity correlates of infant and early childhood cognitive development
por: Bruchhage, Muriel M. K., et al.
Publicado: (2020) -
Trajectories of brain volumes in young children are associated with maternal education
por: Zhu, Changbo, et al.
Publicado: (2023) -
Network evolution of regional brain volumes in young children reflects neurocognitive scores and mother’s education
por: Zhou, Yidong, et al.
Publicado: (2023) -
316 Frontal-cerebellar EEG source localization and functional connectivity as predictors of Alzheimer’s disease-related cognitive decline
por: Paitel, Elizabeth R., et al.
Publicado: (2022)