Cargando…
Data driven theory for knowledge discovery in the exact sciences with applications to thermonuclear fusion
In recent years, the techniques of the exact sciences have been applied to the analysis of increasingly complex and non-linear systems. The related uncertainties and the large amounts of data available have progressively shown the limits of the traditional hypothesis driven methods, based on first p...
Autores principales: | Murari, A., Peluso, E., Lungaroni, M., Gaudio, P., Vega, J., Gelfusa, M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7669895/ https://www.ncbi.nlm.nih.gov/pubmed/33199734 http://dx.doi.org/10.1038/s41598-020-76826-4 |
Ejemplares similares
-
On the Use of Transfer Entropy to Investigate the Time Horizon of Causal Influences between Signals
por: Murari, Andrea, et al.
Publicado: (2018) -
A Model Falsification Approach to Learning in Non-Stationary Environments for Experimental Design
por: Murari, Andrea, et al.
Publicado: (2019) -
Quantifying Total Influence between Variables with Information Theoretic and Machine Learning Techniques
por: Murari, Andrea, et al.
Publicado: (2020) -
Thermonuclear fusion in stars
por: Green, James A
Publicado: (2000) -
Controlled thermonuclear fusion
por: Bobin, Jean Louis
Publicado: (2014)