Cargando…
Development of a machine learning algorithm for early detection of opioid use disorder
BACKGROUND: Opioid use disorder (OUD) affects an estimated 16 million people worldwide. The diagnosis of OUD is commonly delayed or missed altogether. We aimed to test the utility of machine learning in creating a prediction model and algorithm for early diagnosis of OUD. SUBJECTS AND METHODS: We an...
Autores principales: | Segal, Zvi, Radinsky, Kira, Elad, Guy, Marom, Gal, Beladev, Moran, Lewis, Maor, Ehrenberg, Bar, Gillis, Plia, Korn, Liat, Koren, Gideon |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7670130/ https://www.ncbi.nlm.nih.gov/pubmed/33200572 http://dx.doi.org/10.1002/prp2.669 |
Ejemplares similares
-
Machine learning algorithm for early detection of end-stage renal disease
por: Segal, Zvi, et al.
Publicado: (2020) -
Comparison of deep learning with traditional models to predict preventable acute care use and spending among heart failure patients
por: Lewis, Maor, et al.
Publicado: (2021) -
Machine learning of big data in gaining insight into successful treatment of hypertension
por: Koren, Gideon, et al.
Publicado: (2018) -
Identification of repurposable drugs with beneficial effects on glucose control in type 2 diabetes using machine learning
por: Koren, Gideon, et al.
Publicado: (2019) -
The pandemic of the unvaccinated: a Covid-19 ethical dilemma
por: Zamir, Efrat, et al.
Publicado: (2023)