Cargando…
Outage and throughput analysis of power-beacon assisted nonlinear energy harvesting NOMA multi-user relay system over Nakagami-m fading channels
This paper considers a non-orthogonal multiple access (NOMA) multi-user relay system where both source and relay harvest the energy from a power beacon (PB) equipped with multiple antennas and use this harvested energy to transmit signals to several users. Realistic nonlinear energy harvesting model...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7670212/ https://www.ncbi.nlm.nih.gov/pubmed/33235934 http://dx.doi.org/10.1016/j.heliyon.2020.e05440 |
_version_ | 1783610694711640064 |
---|---|
author | Manh Hoang, Tran Nguyen, Ba Cao Trung, Tran Thanh Dung, Le The |
author_facet | Manh Hoang, Tran Nguyen, Ba Cao Trung, Tran Thanh Dung, Le The |
author_sort | Manh Hoang, Tran |
collection | PubMed |
description | This paper considers a non-orthogonal multiple access (NOMA) multi-user relay system where both source and relay harvest the energy from a power beacon (PB) equipped with multiple antennas and use this harvested energy to transmit signals to several users. Realistic nonlinear energy harvesting models are applied, and time switching protocols are adopted at source and relay. We successfully derive the exact closed-form expressions of the outage probability and throughput of the system over Nakagami-m fading channels. Then, we use Monte-Carlo simulations to validate the correctness of these derived mathematical expressions. Numerical results show that a higher saturated power threshold of the nonlinear energy harvester results in lower outage probability and higher throughput. Moreover, the optimal time switching ratio that maximizes the throughput is smaller than the optimal time switching ratio that minimizes the outage probability. |
format | Online Article Text |
id | pubmed-7670212 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-76702122020-11-23 Outage and throughput analysis of power-beacon assisted nonlinear energy harvesting NOMA multi-user relay system over Nakagami-m fading channels Manh Hoang, Tran Nguyen, Ba Cao Trung, Tran Thanh Dung, Le The Heliyon Research Article This paper considers a non-orthogonal multiple access (NOMA) multi-user relay system where both source and relay harvest the energy from a power beacon (PB) equipped with multiple antennas and use this harvested energy to transmit signals to several users. Realistic nonlinear energy harvesting models are applied, and time switching protocols are adopted at source and relay. We successfully derive the exact closed-form expressions of the outage probability and throughput of the system over Nakagami-m fading channels. Then, we use Monte-Carlo simulations to validate the correctness of these derived mathematical expressions. Numerical results show that a higher saturated power threshold of the nonlinear energy harvester results in lower outage probability and higher throughput. Moreover, the optimal time switching ratio that maximizes the throughput is smaller than the optimal time switching ratio that minimizes the outage probability. Elsevier 2020-11-10 /pmc/articles/PMC7670212/ /pubmed/33235934 http://dx.doi.org/10.1016/j.heliyon.2020.e05440 Text en © 2020 Published by Elsevier Ltd. http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Research Article Manh Hoang, Tran Nguyen, Ba Cao Trung, Tran Thanh Dung, Le The Outage and throughput analysis of power-beacon assisted nonlinear energy harvesting NOMA multi-user relay system over Nakagami-m fading channels |
title | Outage and throughput analysis of power-beacon assisted nonlinear energy harvesting NOMA multi-user relay system over Nakagami-m fading channels |
title_full | Outage and throughput analysis of power-beacon assisted nonlinear energy harvesting NOMA multi-user relay system over Nakagami-m fading channels |
title_fullStr | Outage and throughput analysis of power-beacon assisted nonlinear energy harvesting NOMA multi-user relay system over Nakagami-m fading channels |
title_full_unstemmed | Outage and throughput analysis of power-beacon assisted nonlinear energy harvesting NOMA multi-user relay system over Nakagami-m fading channels |
title_short | Outage and throughput analysis of power-beacon assisted nonlinear energy harvesting NOMA multi-user relay system over Nakagami-m fading channels |
title_sort | outage and throughput analysis of power-beacon assisted nonlinear energy harvesting noma multi-user relay system over nakagami-m fading channels |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7670212/ https://www.ncbi.nlm.nih.gov/pubmed/33235934 http://dx.doi.org/10.1016/j.heliyon.2020.e05440 |
work_keys_str_mv | AT manhhoangtran outageandthroughputanalysisofpowerbeaconassistednonlinearenergyharvestingnomamultiuserrelaysystemovernakagamimfadingchannels AT nguyenbacao outageandthroughputanalysisofpowerbeaconassistednonlinearenergyharvestingnomamultiuserrelaysystemovernakagamimfadingchannels AT trungtranthanh outageandthroughputanalysisofpowerbeaconassistednonlinearenergyharvestingnomamultiuserrelaysystemovernakagamimfadingchannels AT dunglethe outageandthroughputanalysisofpowerbeaconassistednonlinearenergyharvestingnomamultiuserrelaysystemovernakagamimfadingchannels |