Cargando…
Effect of Calcium ion on synaptotagmin-like protein during pre-fusion of vesicle for exocytosis in blood-brain barrier
BACKGROUND: Calcium signaling and membrane fusion play key roles in exocytosis of drug-containing vesicles through the blood-brain barrier (BBB). Identifying the role of synaptotagmin-like protein4-a (Slp4-a) in the presence of Ca(2+) ions, at the pre-fusion stage of a vesicle with the basolateral m...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7670242/ https://www.ncbi.nlm.nih.gov/pubmed/33235924 http://dx.doi.org/10.1016/j.bbrep.2020.100845 |
_version_ | 1783610700995756032 |
---|---|
author | Van Dinh, Quyen Liu, Jin Dutta, Prashanta |
author_facet | Van Dinh, Quyen Liu, Jin Dutta, Prashanta |
author_sort | Van Dinh, Quyen |
collection | PubMed |
description | BACKGROUND: Calcium signaling and membrane fusion play key roles in exocytosis of drug-containing vesicles through the blood-brain barrier (BBB). Identifying the role of synaptotagmin-like protein4-a (Slp4-a) in the presence of Ca(2+) ions, at the pre-fusion stage of a vesicle with the basolateral membrane of endothelial cell, can reveal brain drug transportation across BBB. METHODS: We utilized molecular dynamics (MD) simulations with a coarse-grained PACE force field to investigate the behaviors of Slp4-a with vesicular and endothelial membranes at the pre-fusion stage of exocytosis since all-atom MD simulation or experiments are more time-consuming and expensive to capture these behaviors. RESULTS: The Slp4-a pulls lipid membranes (vesicular and endothelial) into close proximity and disorganizes lipid arrangement at contact points, which are predictors for initiation of fusion. Our MD results also indicate that Slp4-a needs Ca(2+) to bind with weakly-charged POPE lipids (phosphatidylethanolamine). CONCLUSIONS: Slp4-a is an important trigger for membrane fusion in BBB exocytosis. It binds to lipid membranes at multiple binding sites and triggers membrane disruption for fusion in calcium-dependent case. GENERAL SIGNIFICANCE: Understanding the prefusion process of the vesicle will help to design better drug delivery mechanisms to the brain through formidable BBB. |
format | Online Article Text |
id | pubmed-7670242 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-76702422020-11-23 Effect of Calcium ion on synaptotagmin-like protein during pre-fusion of vesicle for exocytosis in blood-brain barrier Van Dinh, Quyen Liu, Jin Dutta, Prashanta Biochem Biophys Rep Research Article BACKGROUND: Calcium signaling and membrane fusion play key roles in exocytosis of drug-containing vesicles through the blood-brain barrier (BBB). Identifying the role of synaptotagmin-like protein4-a (Slp4-a) in the presence of Ca(2+) ions, at the pre-fusion stage of a vesicle with the basolateral membrane of endothelial cell, can reveal brain drug transportation across BBB. METHODS: We utilized molecular dynamics (MD) simulations with a coarse-grained PACE force field to investigate the behaviors of Slp4-a with vesicular and endothelial membranes at the pre-fusion stage of exocytosis since all-atom MD simulation or experiments are more time-consuming and expensive to capture these behaviors. RESULTS: The Slp4-a pulls lipid membranes (vesicular and endothelial) into close proximity and disorganizes lipid arrangement at contact points, which are predictors for initiation of fusion. Our MD results also indicate that Slp4-a needs Ca(2+) to bind with weakly-charged POPE lipids (phosphatidylethanolamine). CONCLUSIONS: Slp4-a is an important trigger for membrane fusion in BBB exocytosis. It binds to lipid membranes at multiple binding sites and triggers membrane disruption for fusion in calcium-dependent case. GENERAL SIGNIFICANCE: Understanding the prefusion process of the vesicle will help to design better drug delivery mechanisms to the brain through formidable BBB. Elsevier 2020-11-13 /pmc/articles/PMC7670242/ /pubmed/33235924 http://dx.doi.org/10.1016/j.bbrep.2020.100845 Text en © 2020 The Authors http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Research Article Van Dinh, Quyen Liu, Jin Dutta, Prashanta Effect of Calcium ion on synaptotagmin-like protein during pre-fusion of vesicle for exocytosis in blood-brain barrier |
title | Effect of Calcium ion on synaptotagmin-like protein during pre-fusion of vesicle for exocytosis in blood-brain barrier |
title_full | Effect of Calcium ion on synaptotagmin-like protein during pre-fusion of vesicle for exocytosis in blood-brain barrier |
title_fullStr | Effect of Calcium ion on synaptotagmin-like protein during pre-fusion of vesicle for exocytosis in blood-brain barrier |
title_full_unstemmed | Effect of Calcium ion on synaptotagmin-like protein during pre-fusion of vesicle for exocytosis in blood-brain barrier |
title_short | Effect of Calcium ion on synaptotagmin-like protein during pre-fusion of vesicle for exocytosis in blood-brain barrier |
title_sort | effect of calcium ion on synaptotagmin-like protein during pre-fusion of vesicle for exocytosis in blood-brain barrier |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7670242/ https://www.ncbi.nlm.nih.gov/pubmed/33235924 http://dx.doi.org/10.1016/j.bbrep.2020.100845 |
work_keys_str_mv | AT vandinhquyen effectofcalciumiononsynaptotagminlikeproteinduringprefusionofvesicleforexocytosisinbloodbrainbarrier AT liujin effectofcalciumiononsynaptotagminlikeproteinduringprefusionofvesicleforexocytosisinbloodbrainbarrier AT duttaprashanta effectofcalciumiononsynaptotagminlikeproteinduringprefusionofvesicleforexocytosisinbloodbrainbarrier |