Cargando…
Generating synthetic aging trajectories with a weighted network model using cross-sectional data
We develop a computational model of human aging that generates individual health trajectories with a set of observed health attributes. Our model consists of a network of interacting health attributes that stochastically damage with age to form health deficits, leading to eventual mortality. We trai...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7670406/ https://www.ncbi.nlm.nih.gov/pubmed/33199733 http://dx.doi.org/10.1038/s41598-020-76827-3 |
Sumario: | We develop a computational model of human aging that generates individual health trajectories with a set of observed health attributes. Our model consists of a network of interacting health attributes that stochastically damage with age to form health deficits, leading to eventual mortality. We train and test the model for two different cross-sectional observational aging studies that include simple binarized clinical indicators of health. In both studies, we find that cohorts of simulated individuals generated from the model resemble the observed cross-sectional data in both health characteristics and mortality. We can generate large numbers of synthetic individual aging trajectories with our weighted network model. Predicted average health trajectories and survival probabilities agree well with the observed data. |
---|