Cargando…
Multi‐dimensional predictions of psychotic symptoms via machine learning
The diagnostic criteria for schizophrenia comprise a diverse range of heterogeneous symptoms. As a result, individuals each present a distinct set of symptoms despite having the same overall diagnosis. Whilst previous machine learning studies have primarily focused on dichotomous patient‐control cla...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley & Sons, Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7670649/ https://www.ncbi.nlm.nih.gov/pubmed/32870535 http://dx.doi.org/10.1002/hbm.25181 |
_version_ | 1783610780424339456 |
---|---|
author | Taylor, Jeremy A. Larsen, Kit M. Garrido, Marta I. |
author_facet | Taylor, Jeremy A. Larsen, Kit M. Garrido, Marta I. |
author_sort | Taylor, Jeremy A. |
collection | PubMed |
description | The diagnostic criteria for schizophrenia comprise a diverse range of heterogeneous symptoms. As a result, individuals each present a distinct set of symptoms despite having the same overall diagnosis. Whilst previous machine learning studies have primarily focused on dichotomous patient‐control classification, we predict the severity of each individual symptom on a continuum. We applied machine learning regression within a multi‐modal fusion framework to fMRI and behavioural data acquired during an auditory oddball task in 80 schizophrenia patients. Brain activity was highly predictive of some, but not all symptoms, namely hallucinations, avolition, anhedonia and attention. Critically, each of these symptoms was associated with specific functional alterations across different brain regions. We also found that modelling symptoms as an ensemble of subscales was more accurate, specific and informative than models which predict compound scores directly. In principle, this approach is transferrable to any psychiatric condition or multi‐dimensional diagnosis. |
format | Online Article Text |
id | pubmed-7670649 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | John Wiley & Sons, Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-76706492020-11-23 Multi‐dimensional predictions of psychotic symptoms via machine learning Taylor, Jeremy A. Larsen, Kit M. Garrido, Marta I. Hum Brain Mapp Research Articles The diagnostic criteria for schizophrenia comprise a diverse range of heterogeneous symptoms. As a result, individuals each present a distinct set of symptoms despite having the same overall diagnosis. Whilst previous machine learning studies have primarily focused on dichotomous patient‐control classification, we predict the severity of each individual symptom on a continuum. We applied machine learning regression within a multi‐modal fusion framework to fMRI and behavioural data acquired during an auditory oddball task in 80 schizophrenia patients. Brain activity was highly predictive of some, but not all symptoms, namely hallucinations, avolition, anhedonia and attention. Critically, each of these symptoms was associated with specific functional alterations across different brain regions. We also found that modelling symptoms as an ensemble of subscales was more accurate, specific and informative than models which predict compound scores directly. In principle, this approach is transferrable to any psychiatric condition or multi‐dimensional diagnosis. John Wiley & Sons, Inc. 2020-09-01 /pmc/articles/PMC7670649/ /pubmed/32870535 http://dx.doi.org/10.1002/hbm.25181 Text en © 2020 The Authors. Human Brain Mapping published by Wiley Periodicals LLC. This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes. |
spellingShingle | Research Articles Taylor, Jeremy A. Larsen, Kit M. Garrido, Marta I. Multi‐dimensional predictions of psychotic symptoms via machine learning |
title | Multi‐dimensional predictions of psychotic symptoms via machine learning |
title_full | Multi‐dimensional predictions of psychotic symptoms via machine learning |
title_fullStr | Multi‐dimensional predictions of psychotic symptoms via machine learning |
title_full_unstemmed | Multi‐dimensional predictions of psychotic symptoms via machine learning |
title_short | Multi‐dimensional predictions of psychotic symptoms via machine learning |
title_sort | multi‐dimensional predictions of psychotic symptoms via machine learning |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7670649/ https://www.ncbi.nlm.nih.gov/pubmed/32870535 http://dx.doi.org/10.1002/hbm.25181 |
work_keys_str_mv | AT taylorjeremya multidimensionalpredictionsofpsychoticsymptomsviamachinelearning AT larsenkitm multidimensionalpredictionsofpsychoticsymptomsviamachinelearning AT garridomartai multidimensionalpredictionsofpsychoticsymptomsviamachinelearning |