Cargando…

Protective Effect of Curcumin on Bone Trauma in a Rat Model via Expansion of Myeloid Derived Suppressor Cells

BACKGROUND: Bone fracture, a common injury to bones leads to various biophysiological changes and pathological responses in the body. The current study investigated curcumin for treatment of bone fracture in a rat model of bone trauma, and evaluated the related mechanism. MATERIAL/METHODS: The rats...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Futian, Liu, Fu, Yu, Shaofen, Zhang, Guihong, Li, Jie, Sun, Xinjun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: International Scientific Literature, Inc. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7670833/
https://www.ncbi.nlm.nih.gov/pubmed/33184252
http://dx.doi.org/10.12659/MSM.924724
Descripción
Sumario:BACKGROUND: Bone fracture, a common injury to bones leads to various biophysiological changes and pathological responses in the body. The current study investigated curcumin for treatment of bone fracture in a rat model of bone trauma, and evaluated the related mechanism. MATERIAL/METHODS: The rats were separated randomly into 3 groups; sham, model, and curcumin treatment groups. The fracture rat model was established by transverse osteotomy in the right femur bone at the mid-shaft. The osteoblast count was determined using hematoxylin and eosin staining. Vascular endothelial growth factor (VEGF) and proliferating cell nuclear antigen (PCNA) expression were measured by western blotting. RESULTS: The rpS6-phosphorylation was suppressed and light chain 3 (LC3II) expression elevated in the curcumin treated group of the fracture rat model. In the curcumin-treated group, mineralization of fracture calluses was markedly higher on day 14 of fracture. The formation of osteoblasts was observed at a greater rate in the curcumin treated group compared to the model rat group. Treatment of rats with curcumin significantly (P<0.05) promoted expression of PCNA and VEGF. The decrease in CD11b+/Gr-1+ cell expansion in rats with bone trauma was alleviated significantly by curcumin treatment. A marked increase in arginase-1 expression in rats with bone trauma was caused by curcumin treatment. CONCLUSIONS: In summary, curcumin activates autophagy and inhibits mTOR activation in bone tissues of rats with trauma. The curcumin promoted myeloid-derived suppressor cell (MDSC) proliferation and increased expansion of MDSCs in a rat model of trauma. Therefore, curcumin may have beneficial effect in patients with bone trauma and should be evaluated further for development of treatment.