Cargando…
Janzen’s Hypothesis Meets the Bogert Effect: Connecting Climate Variation, Thermoregulatory Behavior, and Rates of Physiological Evolution
Understanding the motors and brakes that guide physiological evolution is a topic of keen interest, and is of increasing importance in light of global climate change. For more than half a century, Janzen’s hypothesis has been used to understand how climatic variability influences physiological diver...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7671085/ https://www.ncbi.nlm.nih.gov/pubmed/33791511 http://dx.doi.org/10.1093/iob/oby002 |
_version_ | 1783610859311857664 |
---|---|
author | Muñoz, M M Bodensteiner, B L |
author_facet | Muñoz, M M Bodensteiner, B L |
author_sort | Muñoz, M M |
collection | PubMed |
description | Understanding the motors and brakes that guide physiological evolution is a topic of keen interest, and is of increasing importance in light of global climate change. For more than half a century, Janzen’s hypothesis has been used to understand how climatic variability influences physiological divergence across elevation and latitude. At the same time, there has been increasing recognition that behavior and physiological evolution are mechanistically linked, with regulatory behaviors often serving to dampen environmental selection and stymie evolution (a phenomenon termed the Bogert effect). Here, we illustrate how some aspects of Janzen’s hypothesis and the Bogert effect can be connected to conceptually link climate, behavior, and rates of physiological evolution in a common framework. First, we demonstrate how thermal heterogeneity varies between nighttime and daytime environments across elevation in a tropical mountain. Using data from Hispaniolan Anolis lizards, we show how clinal variation in cold tolerance is consistent with thermally homogenous nighttime environments. Elevational patterns of heat tolerance and the preferred temperature, in contrast, are best explained by incorporating the buffering effects of thermoregulatory behavior in thermally heterogeneous daytime environments. In turn, climatic variation and behavior interact to determine rates of physiological evolution, with heat tolerance and the preferred temperature evolving much more slowly than cold tolerance. Conceptually bridging some aspects of Janzen’s hypothesis and the Bogert effect provides an integrative, cohesive framework illustrating how environment and behavior interact to shape patterns of physiological evolution. |
format | Online Article Text |
id | pubmed-7671085 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-76710852021-03-30 Janzen’s Hypothesis Meets the Bogert Effect: Connecting Climate Variation, Thermoregulatory Behavior, and Rates of Physiological Evolution Muñoz, M M Bodensteiner, B L Integr Org Biol Research Article Understanding the motors and brakes that guide physiological evolution is a topic of keen interest, and is of increasing importance in light of global climate change. For more than half a century, Janzen’s hypothesis has been used to understand how climatic variability influences physiological divergence across elevation and latitude. At the same time, there has been increasing recognition that behavior and physiological evolution are mechanistically linked, with regulatory behaviors often serving to dampen environmental selection and stymie evolution (a phenomenon termed the Bogert effect). Here, we illustrate how some aspects of Janzen’s hypothesis and the Bogert effect can be connected to conceptually link climate, behavior, and rates of physiological evolution in a common framework. First, we demonstrate how thermal heterogeneity varies between nighttime and daytime environments across elevation in a tropical mountain. Using data from Hispaniolan Anolis lizards, we show how clinal variation in cold tolerance is consistent with thermally homogenous nighttime environments. Elevational patterns of heat tolerance and the preferred temperature, in contrast, are best explained by incorporating the buffering effects of thermoregulatory behavior in thermally heterogeneous daytime environments. In turn, climatic variation and behavior interact to determine rates of physiological evolution, with heat tolerance and the preferred temperature evolving much more slowly than cold tolerance. Conceptually bridging some aspects of Janzen’s hypothesis and the Bogert effect provides an integrative, cohesive framework illustrating how environment and behavior interact to shape patterns of physiological evolution. Oxford University Press 2019-01-02 /pmc/articles/PMC7671085/ /pubmed/33791511 http://dx.doi.org/10.1093/iob/oby002 Text en © The Author(s) 2018. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. http://creativecommons.org/licenses/by/4.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Muñoz, M M Bodensteiner, B L Janzen’s Hypothesis Meets the Bogert Effect: Connecting Climate Variation, Thermoregulatory Behavior, and Rates of Physiological Evolution |
title | Janzen’s Hypothesis Meets the Bogert Effect: Connecting Climate Variation, Thermoregulatory Behavior, and Rates of Physiological Evolution |
title_full | Janzen’s Hypothesis Meets the Bogert Effect: Connecting Climate Variation, Thermoregulatory Behavior, and Rates of Physiological Evolution |
title_fullStr | Janzen’s Hypothesis Meets the Bogert Effect: Connecting Climate Variation, Thermoregulatory Behavior, and Rates of Physiological Evolution |
title_full_unstemmed | Janzen’s Hypothesis Meets the Bogert Effect: Connecting Climate Variation, Thermoregulatory Behavior, and Rates of Physiological Evolution |
title_short | Janzen’s Hypothesis Meets the Bogert Effect: Connecting Climate Variation, Thermoregulatory Behavior, and Rates of Physiological Evolution |
title_sort | janzen’s hypothesis meets the bogert effect: connecting climate variation, thermoregulatory behavior, and rates of physiological evolution |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7671085/ https://www.ncbi.nlm.nih.gov/pubmed/33791511 http://dx.doi.org/10.1093/iob/oby002 |
work_keys_str_mv | AT munozmm janzenshypothesismeetsthebogerteffectconnectingclimatevariationthermoregulatorybehaviorandratesofphysiologicalevolution AT bodensteinerbl janzenshypothesismeetsthebogerteffectconnectingclimatevariationthermoregulatorybehaviorandratesofphysiologicalevolution |