Cargando…
Design of an amphiphilic hyperbranched core/shell-type polymeric nanocarrier platform for drug delivery
An amphiphilic core/shell-type polymer-based drug carrier system (HPAE- PCL-b -MPEG), composed of hyperbranched poly(aminoester)-based polymer (HPAE) as the core building block and poly(ethylene glycol)-b - poly(ε-caprolactone) diblock polymers (MPEG-b -PCL) as the shell building block, was designed...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Scientific and Technological Research Council of Turkey
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7671224/ https://www.ncbi.nlm.nih.gov/pubmed/33488174 http://dx.doi.org/10.3906/kim-1910-35 |
Sumario: | An amphiphilic core/shell-type polymer-based drug carrier system (HPAE- PCL-b -MPEG), composed of hyperbranched poly(aminoester)-based polymer (HPAE) as the core building block and poly(ethylene glycol)-b - poly(ε-caprolactone) diblock polymers (MPEG-b -PCL) as the shell building block, was designed. The synthesized polymers were characterized with FTIR, 1 H NMR, 13 C NMR, and GPC analysis. Monodisperse HPAE-PCL-b - MPEG nanoparticles with dimensions of < 200 nm and polydispersity index of < 0.5 were prepared by nanoprecipitation method and characterized with SEM, particle size, and zeta potential analysis. 5-Fluorouracil was encapsulated within HPAE-PCL-b -MPEG nanoparticles. In vitro drug release profiles and cytotoxicity of blank and 5-fluorouracil-loaded nanoparticles were examined against the human colon cancer HCT116 cell line. All results suggest that HPAE-PCL-b - MPEG nanoparticles offer an alternative and effective drug nanocarrier system for drug delivery applications. |
---|