Cargando…

Hydrotalcite framework stabilized ruthenium nanoparticles (Ru/HTaL): efficient heterogeneous catalyst for the methanolysis of ammonia-borane

Ruthenium nanoparticles stabilized by a hydrotalcite framework (Ru/HTaL) were prepared by following a 2-step procedure comprising a wet-impregnation of ruthenium(III) chloride precatalyst on the surface of HTaL followed by an ammonia-borane (NH(3)BH(3)) reduction of precatalyst on the HTaL surface a...

Descripción completa

Detalles Bibliográficos
Autores principales: BAĞUÇ, İsmail Burak, YURDERİ, Mehmet, SAYDAN KANBEROĞLU, Gülşah, BULUT, Ahmet
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Scientific and Technological Research Council of Turkey 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7671226/
https://www.ncbi.nlm.nih.gov/pubmed/33488163
http://dx.doi.org/10.3906/kim-1910-44
Descripción
Sumario:Ruthenium nanoparticles stabilized by a hydrotalcite framework (Ru/HTaL) were prepared by following a 2-step procedure comprising a wet-impregnation of ruthenium(III) chloride precatalyst on the surface of HTaL followed by an ammonia-borane (NH(3)BH(3)) reduction of precatalyst on the HTaL surface all at room temperature. The characterization of Ru/HTaL was done by using various spectroscopic and visualization methods including ICP-OES, P-XRD, FTIR, (11)B NMR, XPS, BFTEM, and HRTEM. The sum of the results gained from these analyses has revealed the formation of well-dispersed and highly crystalline ruthenium nanoparticles with a mean diameter of 1.27 ±0.8 nm on HTaL surface. The catalytic performance of Ru/HTaL in terms of activity, selectivity, and stability was investigated in the methanolysis of ammonia-borane (NH(3)BH(3) , AB), which has been considered as one of the most promising chemical hydrogen storage materials. It was found that Ru/HTaL can catalyse methanolysis of AB effectively with an initial turnover frequency (TOF) value of 392.77 min(-1) at conversion (>95%) even at room temperature. Moreover, the catalytic stability tests of Ru/HTaL in AB methanolysis showed that Ru/HTaL acts as a highly stable and reusable heterogeneous catalyst in this reaction by preserving more than 95% of its initial activity even at the 5th recycle.