Cargando…
Normalizing single-cell RNA sequencing data with internal spike-in-like genes
Normalization with respect to sequencing depth is a crucial step in single-cell RNA sequencing preprocessing. Most methods normalize data using the whole transcriptome based on the assumption that the majority of transcriptome remains constant and are unable to detect drastic changes of the transcri...
Autores principales: | Lin, Li, Song, Minfang, Jiang, Yong, Zhao, Xiaojing, Wang, Haopeng, Zhang, Liye |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7671304/ https://www.ncbi.nlm.nih.gov/pubmed/33575610 http://dx.doi.org/10.1093/nargab/lqaa059 |
Ejemplares similares
-
Quantifying ChIP-seq data: a spiking method providing an internal reference for sample-to-sample normalization
por: Bonhoure, Nicolas, et al.
Publicado: (2014) -
Pooling across cells to normalize single-cell RNA sequencing data with many zero counts
por: L. Lun, Aaron T., et al.
Publicado: (2016) -
Splatter: simulation of single-cell RNA sequencing data
por: Zappia, Luke, et al.
Publicado: (2017) -
Normalization and variance stabilization of single-cell RNA-seq data using regularized negative binomial regression
por: Hafemeister, Christoph, et al.
Publicado: (2019) -
splatPop: simulating population scale single-cell RNA sequencing data
por: Azodi, Christina B., et al.
Publicado: (2021)