Cargando…
An interpretable low-complexity machine learning framework for robust exome-based in-silico diagnosis of Crohn’s disease patients
Whole exome sequencing (WES) data are allowing researchers to pinpoint the causes of many Mendelian disorders. In time, sequencing data will be crucial to solve the genome interpretation puzzle, which aims at uncovering the genotype-to-phenotype relationship, but for the moment many conceptual and t...
Autores principales: | Raimondi, Daniele, Simm, Jaak, Arany, Adam, Fariselli, Piero, Cleynen, Isabelle, Moreau, Yves |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7671306/ https://www.ncbi.nlm.nih.gov/pubmed/33575557 http://dx.doi.org/10.1093/nargab/lqaa011 |
Ejemplares similares
-
From genotype to phenotype in Arabidopsis thaliana: in-silico genome interpretation predicts 288 phenotypes from sequencing data
por: Raimondi, Daniele, et al.
Publicado: (2021) -
Editorial: Towards genome interpretation: Computational methods to model the genotype-phenotype relationship
por: Raimondi, Daniele, et al.
Publicado: (2022) -
Genome interpretation in a federated learning context allows the multi-center exome-based risk prediction of Crohn’s disease patients
por: Raimondi, Daniele, et al.
Publicado: (2023) -
Gene prioritization using Bayesian matrix factorization with genomic and phenotypic side information
por: Zakeri, Pooya, et al.
Publicado: (2018) -
Insight into the protein solubility driving forces with neural attention
por: Raimondi, Daniele, et al.
Publicado: (2020)