Cargando…
Deep soft K-means clustering with self-training for single-cell RNA sequence data
Single-cell RNA sequencing (scRNA-seq) allows researchers to study cell heterogeneity at the cellular level. A crucial step in analyzing scRNA-seq data is to cluster cells into subpopulations to facilitate subsequent downstream analysis. However, frequent dropout events and increasing size of scRNA-...
Autores principales: | Chen, Liang, Wang, Weinan, Zhai, Yuyao, Deng, Minghua |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7671315/ https://www.ncbi.nlm.nih.gov/pubmed/33575592 http://dx.doi.org/10.1093/nargab/lqaa039 |
Ejemplares similares
-
Single-Cell Transcriptome Data Clustering via Multinomial Modeling and Adaptive Fuzzy K-Means Algorithm
por: Chen, Liang, et al.
Publicado: (2020) -
Integrating Deep Supervised, Self-Supervised and Unsupervised Learning for Single-Cell RNA-seq Clustering and Annotation
por: Chen, Liang, et al.
Publicado: (2020) -
Training Guidelines for Endovascular Ischemic Stroke Intervention: An International multi-society consensus document
Publicado: (2016) -
Validation of self-administered nasal swabs and postage for the isolation of Staphylococcus aureus
por: Harrison, Ewan M., et al.
Publicado: (2016) -
Elucidating population-wide mycobacterial replication dynamics at the single-cell level
por: Mouton, Jacoba M., et al.
Publicado: (2016)