Cargando…
Single-Cell Virtual Cytometer allows user-friendly and versatile analysis and visualization of multimodal single cell RNAseq datasets
The development of single-cell transcriptomic technologies yields large datasets comprising multimodal informations, such as transcriptomes and immunophenotypes. Despite the current explosion of methods for pre-processing and integrating multimodal single-cell data, there is currently no user-friend...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7671361/ https://www.ncbi.nlm.nih.gov/pubmed/33575582 http://dx.doi.org/10.1093/nargab/lqaa025 |
_version_ | 1783610914400894976 |
---|---|
author | Pont, Frédéric Tosolini, Marie Gao, Qing Perrier, Marion Madrid-Mencía, Miguel Huang, Tse Shun Neuvial, Pierre Ayyoub, Maha Nazor, Kristopher Fournié, Jean-Jacques |
author_facet | Pont, Frédéric Tosolini, Marie Gao, Qing Perrier, Marion Madrid-Mencía, Miguel Huang, Tse Shun Neuvial, Pierre Ayyoub, Maha Nazor, Kristopher Fournié, Jean-Jacques |
author_sort | Pont, Frédéric |
collection | PubMed |
description | The development of single-cell transcriptomic technologies yields large datasets comprising multimodal informations, such as transcriptomes and immunophenotypes. Despite the current explosion of methods for pre-processing and integrating multimodal single-cell data, there is currently no user-friendly software to display easily and simultaneously both immunophenotype and transcriptome-based UMAP/t-SNE plots from the pre-processed data. Here, we introduce Single-Cell Virtual Cytometer, an open-source software for flow cytometry-like visualization and exploration of pre-processed multi-omics single cell datasets. Using an original CITE-seq dataset of PBMC from an healthy donor, we illustrate its use for the integrated analysis of transcriptomes and epitopes of functional maturation in human peripheral T lymphocytes. So this free and open-source algorithm constitutes a unique resource for biologists seeking for a user-friendly analytic tool for multimodal single cell datasets. |
format | Online Article Text |
id | pubmed-7671361 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-76713612021-02-10 Single-Cell Virtual Cytometer allows user-friendly and versatile analysis and visualization of multimodal single cell RNAseq datasets Pont, Frédéric Tosolini, Marie Gao, Qing Perrier, Marion Madrid-Mencía, Miguel Huang, Tse Shun Neuvial, Pierre Ayyoub, Maha Nazor, Kristopher Fournié, Jean-Jacques NAR Genom Bioinform Application Notes The development of single-cell transcriptomic technologies yields large datasets comprising multimodal informations, such as transcriptomes and immunophenotypes. Despite the current explosion of methods for pre-processing and integrating multimodal single-cell data, there is currently no user-friendly software to display easily and simultaneously both immunophenotype and transcriptome-based UMAP/t-SNE plots from the pre-processed data. Here, we introduce Single-Cell Virtual Cytometer, an open-source software for flow cytometry-like visualization and exploration of pre-processed multi-omics single cell datasets. Using an original CITE-seq dataset of PBMC from an healthy donor, we illustrate its use for the integrated analysis of transcriptomes and epitopes of functional maturation in human peripheral T lymphocytes. So this free and open-source algorithm constitutes a unique resource for biologists seeking for a user-friendly analytic tool for multimodal single cell datasets. Oxford University Press 2020-04-20 /pmc/articles/PMC7671361/ /pubmed/33575582 http://dx.doi.org/10.1093/nargab/lqaa025 Text en © The Author(s) 2019. Published by Oxford University Press on behalf of NAR Genomics and Bioinformatics. http://creativecommons.org/licenses/by-nc/4.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com |
spellingShingle | Application Notes Pont, Frédéric Tosolini, Marie Gao, Qing Perrier, Marion Madrid-Mencía, Miguel Huang, Tse Shun Neuvial, Pierre Ayyoub, Maha Nazor, Kristopher Fournié, Jean-Jacques Single-Cell Virtual Cytometer allows user-friendly and versatile analysis and visualization of multimodal single cell RNAseq datasets |
title | Single-Cell Virtual Cytometer allows user-friendly and versatile analysis and visualization of multimodal single cell RNAseq datasets |
title_full | Single-Cell Virtual Cytometer allows user-friendly and versatile analysis and visualization of multimodal single cell RNAseq datasets |
title_fullStr | Single-Cell Virtual Cytometer allows user-friendly and versatile analysis and visualization of multimodal single cell RNAseq datasets |
title_full_unstemmed | Single-Cell Virtual Cytometer allows user-friendly and versatile analysis and visualization of multimodal single cell RNAseq datasets |
title_short | Single-Cell Virtual Cytometer allows user-friendly and versatile analysis and visualization of multimodal single cell RNAseq datasets |
title_sort | single-cell virtual cytometer allows user-friendly and versatile analysis and visualization of multimodal single cell rnaseq datasets |
topic | Application Notes |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7671361/ https://www.ncbi.nlm.nih.gov/pubmed/33575582 http://dx.doi.org/10.1093/nargab/lqaa025 |
work_keys_str_mv | AT pontfrederic singlecellvirtualcytometerallowsuserfriendlyandversatileanalysisandvisualizationofmultimodalsinglecellrnaseqdatasets AT tosolinimarie singlecellvirtualcytometerallowsuserfriendlyandversatileanalysisandvisualizationofmultimodalsinglecellrnaseqdatasets AT gaoqing singlecellvirtualcytometerallowsuserfriendlyandversatileanalysisandvisualizationofmultimodalsinglecellrnaseqdatasets AT perriermarion singlecellvirtualcytometerallowsuserfriendlyandversatileanalysisandvisualizationofmultimodalsinglecellrnaseqdatasets AT madridmenciamiguel singlecellvirtualcytometerallowsuserfriendlyandversatileanalysisandvisualizationofmultimodalsinglecellrnaseqdatasets AT huangtseshun singlecellvirtualcytometerallowsuserfriendlyandversatileanalysisandvisualizationofmultimodalsinglecellrnaseqdatasets AT neuvialpierre singlecellvirtualcytometerallowsuserfriendlyandversatileanalysisandvisualizationofmultimodalsinglecellrnaseqdatasets AT ayyoubmaha singlecellvirtualcytometerallowsuserfriendlyandversatileanalysisandvisualizationofmultimodalsinglecellrnaseqdatasets AT nazorkristopher singlecellvirtualcytometerallowsuserfriendlyandversatileanalysisandvisualizationofmultimodalsinglecellrnaseqdatasets AT fourniejeanjacques singlecellvirtualcytometerallowsuserfriendlyandversatileanalysisandvisualizationofmultimodalsinglecellrnaseqdatasets |