Cargando…

Single-Cell Virtual Cytometer allows user-friendly and versatile analysis and visualization of multimodal single cell RNAseq datasets

The development of single-cell transcriptomic technologies yields large datasets comprising multimodal informations, such as transcriptomes and immunophenotypes. Despite the current explosion of methods for pre-processing and integrating multimodal single-cell data, there is currently no user-friend...

Descripción completa

Detalles Bibliográficos
Autores principales: Pont, Frédéric, Tosolini, Marie, Gao, Qing, Perrier, Marion, Madrid-Mencía, Miguel, Huang, Tse Shun, Neuvial, Pierre, Ayyoub, Maha, Nazor, Kristopher, Fournié, Jean-Jacques
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7671361/
https://www.ncbi.nlm.nih.gov/pubmed/33575582
http://dx.doi.org/10.1093/nargab/lqaa025
_version_ 1783610914400894976
author Pont, Frédéric
Tosolini, Marie
Gao, Qing
Perrier, Marion
Madrid-Mencía, Miguel
Huang, Tse Shun
Neuvial, Pierre
Ayyoub, Maha
Nazor, Kristopher
Fournié, Jean-Jacques
author_facet Pont, Frédéric
Tosolini, Marie
Gao, Qing
Perrier, Marion
Madrid-Mencía, Miguel
Huang, Tse Shun
Neuvial, Pierre
Ayyoub, Maha
Nazor, Kristopher
Fournié, Jean-Jacques
author_sort Pont, Frédéric
collection PubMed
description The development of single-cell transcriptomic technologies yields large datasets comprising multimodal informations, such as transcriptomes and immunophenotypes. Despite the current explosion of methods for pre-processing and integrating multimodal single-cell data, there is currently no user-friendly software to display easily and simultaneously both immunophenotype and transcriptome-based UMAP/t-SNE plots from the pre-processed data. Here, we introduce Single-Cell Virtual Cytometer, an open-source software for flow cytometry-like visualization and exploration of pre-processed multi-omics single cell datasets. Using an original CITE-seq dataset of PBMC from an healthy donor, we illustrate its use for the integrated analysis of transcriptomes and epitopes of functional maturation in human peripheral T lymphocytes. So this free and open-source algorithm constitutes a unique resource for biologists seeking for a user-friendly analytic tool for multimodal single cell datasets.
format Online
Article
Text
id pubmed-7671361
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-76713612021-02-10 Single-Cell Virtual Cytometer allows user-friendly and versatile analysis and visualization of multimodal single cell RNAseq datasets Pont, Frédéric Tosolini, Marie Gao, Qing Perrier, Marion Madrid-Mencía, Miguel Huang, Tse Shun Neuvial, Pierre Ayyoub, Maha Nazor, Kristopher Fournié, Jean-Jacques NAR Genom Bioinform Application Notes The development of single-cell transcriptomic technologies yields large datasets comprising multimodal informations, such as transcriptomes and immunophenotypes. Despite the current explosion of methods for pre-processing and integrating multimodal single-cell data, there is currently no user-friendly software to display easily and simultaneously both immunophenotype and transcriptome-based UMAP/t-SNE plots from the pre-processed data. Here, we introduce Single-Cell Virtual Cytometer, an open-source software for flow cytometry-like visualization and exploration of pre-processed multi-omics single cell datasets. Using an original CITE-seq dataset of PBMC from an healthy donor, we illustrate its use for the integrated analysis of transcriptomes and epitopes of functional maturation in human peripheral T lymphocytes. So this free and open-source algorithm constitutes a unique resource for biologists seeking for a user-friendly analytic tool for multimodal single cell datasets. Oxford University Press 2020-04-20 /pmc/articles/PMC7671361/ /pubmed/33575582 http://dx.doi.org/10.1093/nargab/lqaa025 Text en © The Author(s) 2019. Published by Oxford University Press on behalf of NAR Genomics and Bioinformatics. http://creativecommons.org/licenses/by-nc/4.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
spellingShingle Application Notes
Pont, Frédéric
Tosolini, Marie
Gao, Qing
Perrier, Marion
Madrid-Mencía, Miguel
Huang, Tse Shun
Neuvial, Pierre
Ayyoub, Maha
Nazor, Kristopher
Fournié, Jean-Jacques
Single-Cell Virtual Cytometer allows user-friendly and versatile analysis and visualization of multimodal single cell RNAseq datasets
title Single-Cell Virtual Cytometer allows user-friendly and versatile analysis and visualization of multimodal single cell RNAseq datasets
title_full Single-Cell Virtual Cytometer allows user-friendly and versatile analysis and visualization of multimodal single cell RNAseq datasets
title_fullStr Single-Cell Virtual Cytometer allows user-friendly and versatile analysis and visualization of multimodal single cell RNAseq datasets
title_full_unstemmed Single-Cell Virtual Cytometer allows user-friendly and versatile analysis and visualization of multimodal single cell RNAseq datasets
title_short Single-Cell Virtual Cytometer allows user-friendly and versatile analysis and visualization of multimodal single cell RNAseq datasets
title_sort single-cell virtual cytometer allows user-friendly and versatile analysis and visualization of multimodal single cell rnaseq datasets
topic Application Notes
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7671361/
https://www.ncbi.nlm.nih.gov/pubmed/33575582
http://dx.doi.org/10.1093/nargab/lqaa025
work_keys_str_mv AT pontfrederic singlecellvirtualcytometerallowsuserfriendlyandversatileanalysisandvisualizationofmultimodalsinglecellrnaseqdatasets
AT tosolinimarie singlecellvirtualcytometerallowsuserfriendlyandversatileanalysisandvisualizationofmultimodalsinglecellrnaseqdatasets
AT gaoqing singlecellvirtualcytometerallowsuserfriendlyandversatileanalysisandvisualizationofmultimodalsinglecellrnaseqdatasets
AT perriermarion singlecellvirtualcytometerallowsuserfriendlyandversatileanalysisandvisualizationofmultimodalsinglecellrnaseqdatasets
AT madridmenciamiguel singlecellvirtualcytometerallowsuserfriendlyandversatileanalysisandvisualizationofmultimodalsinglecellrnaseqdatasets
AT huangtseshun singlecellvirtualcytometerallowsuserfriendlyandversatileanalysisandvisualizationofmultimodalsinglecellrnaseqdatasets
AT neuvialpierre singlecellvirtualcytometerallowsuserfriendlyandversatileanalysisandvisualizationofmultimodalsinglecellrnaseqdatasets
AT ayyoubmaha singlecellvirtualcytometerallowsuserfriendlyandversatileanalysisandvisualizationofmultimodalsinglecellrnaseqdatasets
AT nazorkristopher singlecellvirtualcytometerallowsuserfriendlyandversatileanalysisandvisualizationofmultimodalsinglecellrnaseqdatasets
AT fourniejeanjacques singlecellvirtualcytometerallowsuserfriendlyandversatileanalysisandvisualizationofmultimodalsinglecellrnaseqdatasets