Cargando…
Untangling biological factors influencing trajectory inference from single cell data
Advances in single-cell RNA sequencing over the past decade has shifted the discussion of cell identity toward the transcriptional state of the cell. While the incredible resolution provided by single-cell RNA sequencing has led to great advances in unraveling tissue heterogeneity and inferring cell...
Autores principales: | Charrout, Mohammed, Reinders, Marcel J T, Mahfouz, Ahmed |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7671373/ https://www.ncbi.nlm.nih.gov/pubmed/33575604 http://dx.doi.org/10.1093/nargab/lqaa053 |
Ejemplares similares
-
Untangling biological factors influencing trajectory inference from single cell data
por: Charrout, Mohammed, et al.
Publicado: (2020) -
Differential analysis of binarized single-cell RNA sequencing data captures biological variation
por: Bouland, Gerard A, et al.
Publicado: (2021) -
Benchmarking variational AutoEncoders on cancer transcriptomics data
por: Eltager, Mostafa, et al.
Publicado: (2023) -
Inferring structural and dynamical properties of gene networks from data with deep learning
por: Chen, Feng, et al.
Publicado: (2022) -
Cell type deconvolution of methylated cell-free DNA at the resolution of individual reads
por: Keukeleire, Pia, et al.
Publicado: (2023)