Cargando…
Combined use of feature engineering and machine-learning to predict essential genes in Drosophila melanogaster
Characterizing genes that are critical for the survival of an organism (i.e. essential) is important to gain a deep understanding of the fundamental cellular and molecular mechanisms that sustain life. Functional genomic investigations of the vinegar fly, Drosophila melanogaster, have unravelled the...
Autores principales: | Campos, Tulio L, Korhonen, Pasi K, Hofmann, Andreas, Gasser, Robin B, Young, Neil D |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7671374/ https://www.ncbi.nlm.nih.gov/pubmed/33575603 http://dx.doi.org/10.1093/nargab/lqaa051 |
Ejemplares similares
-
Predicting gene essentiality in Caenorhabditis elegans by feature engineering and machine-learning
por: Campos, Tulio L., et al.
Publicado: (2020) -
An Evaluation of Machine Learning Approaches for the Prediction of Essential Genes in Eukaryotes Using Protein Sequence-Derived Features()
por: Campos, Tulio L., et al.
Publicado: (2019) -
Cross-Predicting Essential Genes between Two Model Eukaryotic Species Using Machine Learning
por: Campos, Tulio L., et al.
Publicado: (2021) -
Identifying essential genes across eukaryotes by machine learning
por: Beder, Thomas, et al.
Publicado: (2021) -
RFcaller: a machine learning approach combined with read-level features to detect somatic mutations
por: Díaz-Navarro, Ander, et al.
Publicado: (2023)