Cargando…
RNAsamba: neural network-based assessment of the protein-coding potential of RNA sequences
The advent of high-throughput sequencing technologies made it possible to obtain large volumes of genetic information, quickly and inexpensively. Thus, many efforts are devoted to unveiling the biological roles of genomic elements, being the distinction between protein-coding and long non-coding RNA...
Autores principales: | Camargo, Antonio P, Sourkov, Vsevolod, Pereira, Gonçalo A G, Carazzolle, Marcelo F |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7671399/ https://www.ncbi.nlm.nih.gov/pubmed/33575571 http://dx.doi.org/10.1093/nargab/lqz024 |
Ejemplares similares
-
Basset: learning the regulatory code of the accessible genome with deep convolutional neural networks
por: Kelley, David R., et al.
Publicado: (2016) -
CPPred: coding potential prediction based on the global description of RNA sequence
por: Tong, Xiaoxue, et al.
Publicado: (2019) -
Characterizing RNA Pseudouridylation by Convolutional Neural Networks
por: He, Xuan, et al.
Publicado: (2021) -
BASiNET—BiologicAl Sequences NETwork: a case study on coding and non-coding RNAs identification
por: Ito, Eric Augusto, et al.
Publicado: (2018) -
Chromatin-RNA in situ Reverse Transcription Sequencing (CRIST-seq) Approach to Profile the Non-coding RNA Interaction Network
por: Zhang, Shilin, et al.
Publicado: (2023)