Cargando…

Relationships between body composition and pulmonary function in a community-dwelling population in Japan

Pulmonary diseases, including chronic obstructive pulmonary disease (COPD), are major chronic diseases that result in decreased pulmonary function. Relationships between body composition and pulmonary function have been reported. However, few epidemiological studies have used the visceral fat area (...

Descripción completa

Detalles Bibliográficos
Autores principales: Kawabata, Ryosuke, Soma, Yuki, Kudo, Yutaro, Yokoyama, Junichi, Shimizu, Hiroyasu, Akaike, Arata, Suzuki, Daisuke, Katsuragi, Yoshihisa, Totsuka, Manabu, Nakaji, Shigeyuki
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7671549/
https://www.ncbi.nlm.nih.gov/pubmed/33201904
http://dx.doi.org/10.1371/journal.pone.0242308
Descripción
Sumario:Pulmonary diseases, including chronic obstructive pulmonary disease (COPD), are major chronic diseases that result in decreased pulmonary function. Relationships between body composition and pulmonary function have been reported. However, few epidemiological studies have used the visceral fat area (VFA) to measure body composition. This study aimed to examine the relationship between body composition and pulmonary function. A cross-sectional study was conducted between 2015 and 2016, using data obtained from 1,287 residents aged between 19 and 91 years living in the Iwaki area of Hirosaki City, a rural region in Aomori Prefecture, Japan. Pulmonary function was evaluated using the forced vital capacity (FVC) as a percentage of the predicted value (predicted FVC%) and the ratio of forced expiratory volume in one second (FEV(1)) to FVC. The measurements for evaluating body composition included the body fat percentage (BFP) of the whole body and trunk, skeletal muscle index (SMI), body mass index (BMI), VFA, waist circumference (WC) at the navel level, and waist-to-hip ratio (WHR). To adjust for potential confounders, Spearman’s partial correlation analysis was used to examine the relationship between the measurements of body composition and pulmonary function. There were significant correlations between the predicted FVC% and the following parameters: BFP (whole body and trunk) in younger males; SMI in older males; WC, VFA, BMI, and SMI in younger females; and BFP (whole body and trunk) and VFA in older females. Contrastingly, WC and VFA in younger males and WC in younger females were correlated with the FEV(1)/FVC ratio. VFA was correlated with the FEV(1)/FVC ratio in younger males and predicted FVC% in older females. These findings suggest that visceral fat accumulation may increase the development of obstructive pulmonary disease in young males and accelerate the decline of pulmonary function (predicted FVC%) in older females.