Cargando…

Recommendations for patient similarity classes: results of the AMIA 2019 workshop on defining patient similarity

Defining patient-to-patient similarity is essential for the development of precision medicine in clinical care and research. Conceptually, the identification of similar patient cohorts appears straightforward; however, universally accepted definitions remain elusive. Simultaneously, an explosion of...

Descripción completa

Detalles Bibliográficos
Autores principales: Seligson, Nathan D, Warner, Jeremy L, Dalton, William S, Martin, David, Miller, Robert S, Patt, Debra, Kehl, Kenneth L, Palchuk, Matvey B, Alterovitz, Gil, Wiley, Laura K, Huang, Ming, Shen, Feichen, Wang, Yanshan, Nguyen, Khoa A, Wong, Anthony F, Meric-Bernstam, Funda, Bernstam, Elmer V, Chen, James L
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7671612/
https://www.ncbi.nlm.nih.gov/pubmed/32885823
http://dx.doi.org/10.1093/jamia/ocaa159
_version_ 1783610962501173248
author Seligson, Nathan D
Warner, Jeremy L
Dalton, William S
Martin, David
Miller, Robert S
Patt, Debra
Kehl, Kenneth L
Palchuk, Matvey B
Alterovitz, Gil
Wiley, Laura K
Huang, Ming
Shen, Feichen
Wang, Yanshan
Nguyen, Khoa A
Wong, Anthony F
Meric-Bernstam, Funda
Bernstam, Elmer V
Chen, James L
author_facet Seligson, Nathan D
Warner, Jeremy L
Dalton, William S
Martin, David
Miller, Robert S
Patt, Debra
Kehl, Kenneth L
Palchuk, Matvey B
Alterovitz, Gil
Wiley, Laura K
Huang, Ming
Shen, Feichen
Wang, Yanshan
Nguyen, Khoa A
Wong, Anthony F
Meric-Bernstam, Funda
Bernstam, Elmer V
Chen, James L
author_sort Seligson, Nathan D
collection PubMed
description Defining patient-to-patient similarity is essential for the development of precision medicine in clinical care and research. Conceptually, the identification of similar patient cohorts appears straightforward; however, universally accepted definitions remain elusive. Simultaneously, an explosion of vendors and published algorithms have emerged and all provide varied levels of functionality in identifying patient similarity categories. To provide clarity and a common framework for patient similarity, a workshop at the American Medical Informatics Association 2019 Annual Meeting was convened. This workshop included invited discussants from academics, the biotechnology industry, the FDA, and private practice oncology groups. Drawing from a broad range of backgrounds, workshop participants were able to coalesce around 4 major patient similarity classes: (1) feature, (2) outcome, (3) exposure, and (4) mixed-class. This perspective expands into these 4 subtypes more critically and offers the medical informatics community a means of communicating their work on this important topic.
format Online
Article
Text
id pubmed-7671612
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-76716122020-11-30 Recommendations for patient similarity classes: results of the AMIA 2019 workshop on defining patient similarity Seligson, Nathan D Warner, Jeremy L Dalton, William S Martin, David Miller, Robert S Patt, Debra Kehl, Kenneth L Palchuk, Matvey B Alterovitz, Gil Wiley, Laura K Huang, Ming Shen, Feichen Wang, Yanshan Nguyen, Khoa A Wong, Anthony F Meric-Bernstam, Funda Bernstam, Elmer V Chen, James L J Am Med Inform Assoc Perspectives Defining patient-to-patient similarity is essential for the development of precision medicine in clinical care and research. Conceptually, the identification of similar patient cohorts appears straightforward; however, universally accepted definitions remain elusive. Simultaneously, an explosion of vendors and published algorithms have emerged and all provide varied levels of functionality in identifying patient similarity categories. To provide clarity and a common framework for patient similarity, a workshop at the American Medical Informatics Association 2019 Annual Meeting was convened. This workshop included invited discussants from academics, the biotechnology industry, the FDA, and private practice oncology groups. Drawing from a broad range of backgrounds, workshop participants were able to coalesce around 4 major patient similarity classes: (1) feature, (2) outcome, (3) exposure, and (4) mixed-class. This perspective expands into these 4 subtypes more critically and offers the medical informatics community a means of communicating their work on this important topic. Oxford University Press 2020-09-04 /pmc/articles/PMC7671612/ /pubmed/32885823 http://dx.doi.org/10.1093/jamia/ocaa159 Text en © The Author(s) 2020. Published by Oxford University Press on behalf of the American Medical Informatics Association. http://creativecommons.org/licenses/by-nc/4.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
spellingShingle Perspectives
Seligson, Nathan D
Warner, Jeremy L
Dalton, William S
Martin, David
Miller, Robert S
Patt, Debra
Kehl, Kenneth L
Palchuk, Matvey B
Alterovitz, Gil
Wiley, Laura K
Huang, Ming
Shen, Feichen
Wang, Yanshan
Nguyen, Khoa A
Wong, Anthony F
Meric-Bernstam, Funda
Bernstam, Elmer V
Chen, James L
Recommendations for patient similarity classes: results of the AMIA 2019 workshop on defining patient similarity
title Recommendations for patient similarity classes: results of the AMIA 2019 workshop on defining patient similarity
title_full Recommendations for patient similarity classes: results of the AMIA 2019 workshop on defining patient similarity
title_fullStr Recommendations for patient similarity classes: results of the AMIA 2019 workshop on defining patient similarity
title_full_unstemmed Recommendations for patient similarity classes: results of the AMIA 2019 workshop on defining patient similarity
title_short Recommendations for patient similarity classes: results of the AMIA 2019 workshop on defining patient similarity
title_sort recommendations for patient similarity classes: results of the amia 2019 workshop on defining patient similarity
topic Perspectives
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7671612/
https://www.ncbi.nlm.nih.gov/pubmed/32885823
http://dx.doi.org/10.1093/jamia/ocaa159
work_keys_str_mv AT seligsonnathand recommendationsforpatientsimilarityclassesresultsoftheamia2019workshopondefiningpatientsimilarity
AT warnerjeremyl recommendationsforpatientsimilarityclassesresultsoftheamia2019workshopondefiningpatientsimilarity
AT daltonwilliams recommendationsforpatientsimilarityclassesresultsoftheamia2019workshopondefiningpatientsimilarity
AT martindavid recommendationsforpatientsimilarityclassesresultsoftheamia2019workshopondefiningpatientsimilarity
AT millerroberts recommendationsforpatientsimilarityclassesresultsoftheamia2019workshopondefiningpatientsimilarity
AT pattdebra recommendationsforpatientsimilarityclassesresultsoftheamia2019workshopondefiningpatientsimilarity
AT kehlkennethl recommendationsforpatientsimilarityclassesresultsoftheamia2019workshopondefiningpatientsimilarity
AT palchukmatveyb recommendationsforpatientsimilarityclassesresultsoftheamia2019workshopondefiningpatientsimilarity
AT alterovitzgil recommendationsforpatientsimilarityclassesresultsoftheamia2019workshopondefiningpatientsimilarity
AT wileylaurak recommendationsforpatientsimilarityclassesresultsoftheamia2019workshopondefiningpatientsimilarity
AT huangming recommendationsforpatientsimilarityclassesresultsoftheamia2019workshopondefiningpatientsimilarity
AT shenfeichen recommendationsforpatientsimilarityclassesresultsoftheamia2019workshopondefiningpatientsimilarity
AT wangyanshan recommendationsforpatientsimilarityclassesresultsoftheamia2019workshopondefiningpatientsimilarity
AT nguyenkhoaa recommendationsforpatientsimilarityclassesresultsoftheamia2019workshopondefiningpatientsimilarity
AT wonganthonyf recommendationsforpatientsimilarityclassesresultsoftheamia2019workshopondefiningpatientsimilarity
AT mericbernstamfunda recommendationsforpatientsimilarityclassesresultsoftheamia2019workshopondefiningpatientsimilarity
AT bernstamelmerv recommendationsforpatientsimilarityclassesresultsoftheamia2019workshopondefiningpatientsimilarity
AT chenjamesl recommendationsforpatientsimilarityclassesresultsoftheamia2019workshopondefiningpatientsimilarity