Cargando…
Recommendations for patient similarity classes: results of the AMIA 2019 workshop on defining patient similarity
Defining patient-to-patient similarity is essential for the development of precision medicine in clinical care and research. Conceptually, the identification of similar patient cohorts appears straightforward; however, universally accepted definitions remain elusive. Simultaneously, an explosion of...
Autores principales: | , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7671612/ https://www.ncbi.nlm.nih.gov/pubmed/32885823 http://dx.doi.org/10.1093/jamia/ocaa159 |
_version_ | 1783610962501173248 |
---|---|
author | Seligson, Nathan D Warner, Jeremy L Dalton, William S Martin, David Miller, Robert S Patt, Debra Kehl, Kenneth L Palchuk, Matvey B Alterovitz, Gil Wiley, Laura K Huang, Ming Shen, Feichen Wang, Yanshan Nguyen, Khoa A Wong, Anthony F Meric-Bernstam, Funda Bernstam, Elmer V Chen, James L |
author_facet | Seligson, Nathan D Warner, Jeremy L Dalton, William S Martin, David Miller, Robert S Patt, Debra Kehl, Kenneth L Palchuk, Matvey B Alterovitz, Gil Wiley, Laura K Huang, Ming Shen, Feichen Wang, Yanshan Nguyen, Khoa A Wong, Anthony F Meric-Bernstam, Funda Bernstam, Elmer V Chen, James L |
author_sort | Seligson, Nathan D |
collection | PubMed |
description | Defining patient-to-patient similarity is essential for the development of precision medicine in clinical care and research. Conceptually, the identification of similar patient cohorts appears straightforward; however, universally accepted definitions remain elusive. Simultaneously, an explosion of vendors and published algorithms have emerged and all provide varied levels of functionality in identifying patient similarity categories. To provide clarity and a common framework for patient similarity, a workshop at the American Medical Informatics Association 2019 Annual Meeting was convened. This workshop included invited discussants from academics, the biotechnology industry, the FDA, and private practice oncology groups. Drawing from a broad range of backgrounds, workshop participants were able to coalesce around 4 major patient similarity classes: (1) feature, (2) outcome, (3) exposure, and (4) mixed-class. This perspective expands into these 4 subtypes more critically and offers the medical informatics community a means of communicating their work on this important topic. |
format | Online Article Text |
id | pubmed-7671612 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-76716122020-11-30 Recommendations for patient similarity classes: results of the AMIA 2019 workshop on defining patient similarity Seligson, Nathan D Warner, Jeremy L Dalton, William S Martin, David Miller, Robert S Patt, Debra Kehl, Kenneth L Palchuk, Matvey B Alterovitz, Gil Wiley, Laura K Huang, Ming Shen, Feichen Wang, Yanshan Nguyen, Khoa A Wong, Anthony F Meric-Bernstam, Funda Bernstam, Elmer V Chen, James L J Am Med Inform Assoc Perspectives Defining patient-to-patient similarity is essential for the development of precision medicine in clinical care and research. Conceptually, the identification of similar patient cohorts appears straightforward; however, universally accepted definitions remain elusive. Simultaneously, an explosion of vendors and published algorithms have emerged and all provide varied levels of functionality in identifying patient similarity categories. To provide clarity and a common framework for patient similarity, a workshop at the American Medical Informatics Association 2019 Annual Meeting was convened. This workshop included invited discussants from academics, the biotechnology industry, the FDA, and private practice oncology groups. Drawing from a broad range of backgrounds, workshop participants were able to coalesce around 4 major patient similarity classes: (1) feature, (2) outcome, (3) exposure, and (4) mixed-class. This perspective expands into these 4 subtypes more critically and offers the medical informatics community a means of communicating their work on this important topic. Oxford University Press 2020-09-04 /pmc/articles/PMC7671612/ /pubmed/32885823 http://dx.doi.org/10.1093/jamia/ocaa159 Text en © The Author(s) 2020. Published by Oxford University Press on behalf of the American Medical Informatics Association. http://creativecommons.org/licenses/by-nc/4.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com |
spellingShingle | Perspectives Seligson, Nathan D Warner, Jeremy L Dalton, William S Martin, David Miller, Robert S Patt, Debra Kehl, Kenneth L Palchuk, Matvey B Alterovitz, Gil Wiley, Laura K Huang, Ming Shen, Feichen Wang, Yanshan Nguyen, Khoa A Wong, Anthony F Meric-Bernstam, Funda Bernstam, Elmer V Chen, James L Recommendations for patient similarity classes: results of the AMIA 2019 workshop on defining patient similarity |
title | Recommendations for patient similarity classes: results of the AMIA 2019 workshop on defining patient similarity |
title_full | Recommendations for patient similarity classes: results of the AMIA 2019 workshop on defining patient similarity |
title_fullStr | Recommendations for patient similarity classes: results of the AMIA 2019 workshop on defining patient similarity |
title_full_unstemmed | Recommendations for patient similarity classes: results of the AMIA 2019 workshop on defining patient similarity |
title_short | Recommendations for patient similarity classes: results of the AMIA 2019 workshop on defining patient similarity |
title_sort | recommendations for patient similarity classes: results of the amia 2019 workshop on defining patient similarity |
topic | Perspectives |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7671612/ https://www.ncbi.nlm.nih.gov/pubmed/32885823 http://dx.doi.org/10.1093/jamia/ocaa159 |
work_keys_str_mv | AT seligsonnathand recommendationsforpatientsimilarityclassesresultsoftheamia2019workshopondefiningpatientsimilarity AT warnerjeremyl recommendationsforpatientsimilarityclassesresultsoftheamia2019workshopondefiningpatientsimilarity AT daltonwilliams recommendationsforpatientsimilarityclassesresultsoftheamia2019workshopondefiningpatientsimilarity AT martindavid recommendationsforpatientsimilarityclassesresultsoftheamia2019workshopondefiningpatientsimilarity AT millerroberts recommendationsforpatientsimilarityclassesresultsoftheamia2019workshopondefiningpatientsimilarity AT pattdebra recommendationsforpatientsimilarityclassesresultsoftheamia2019workshopondefiningpatientsimilarity AT kehlkennethl recommendationsforpatientsimilarityclassesresultsoftheamia2019workshopondefiningpatientsimilarity AT palchukmatveyb recommendationsforpatientsimilarityclassesresultsoftheamia2019workshopondefiningpatientsimilarity AT alterovitzgil recommendationsforpatientsimilarityclassesresultsoftheamia2019workshopondefiningpatientsimilarity AT wileylaurak recommendationsforpatientsimilarityclassesresultsoftheamia2019workshopondefiningpatientsimilarity AT huangming recommendationsforpatientsimilarityclassesresultsoftheamia2019workshopondefiningpatientsimilarity AT shenfeichen recommendationsforpatientsimilarityclassesresultsoftheamia2019workshopondefiningpatientsimilarity AT wangyanshan recommendationsforpatientsimilarityclassesresultsoftheamia2019workshopondefiningpatientsimilarity AT nguyenkhoaa recommendationsforpatientsimilarityclassesresultsoftheamia2019workshopondefiningpatientsimilarity AT wonganthonyf recommendationsforpatientsimilarityclassesresultsoftheamia2019workshopondefiningpatientsimilarity AT mericbernstamfunda recommendationsforpatientsimilarityclassesresultsoftheamia2019workshopondefiningpatientsimilarity AT bernstamelmerv recommendationsforpatientsimilarityclassesresultsoftheamia2019workshopondefiningpatientsimilarity AT chenjamesl recommendationsforpatientsimilarityclassesresultsoftheamia2019workshopondefiningpatientsimilarity |