Cargando…
A machine learning–based clinical decision support system to identify prescriptions with a high risk of medication error
OBJECTIVE: To improve patient safety and clinical outcomes by reducing the risk of prescribing errors, we tested the accuracy of a hybrid clinical decision support system in prioritizing prescription checks. MATERIALS AND METHODS: Data from electronic health records were collated over a period of 18...
Autores principales: | Corny, Jennifer, Rajkumar, Asok, Martin, Olivier, Dode, Xavier, Lajonchère, Jean-Patrick, Billuart, Olivier, Bézie, Yvonnick, Buronfosse, Anne |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7671619/ https://www.ncbi.nlm.nih.gov/pubmed/32984901 http://dx.doi.org/10.1093/jamia/ocaa154 |
Ejemplares similares
-
Effectiveness of a ‘do not interrupt’ vest intervention to reduce medication errors during medication administration: a multicenter cluster randomized controlled trial
por: Berdot, Sarah, et al.
Publicado: (2021) -
GARDE: a standards-based clinical decision support platform for identifying population health management cohorts
por: Bradshaw, Richard L, et al.
Publicado: (2022) -
Comparison of an oncology clinical decision-support system’s recommendations with actual treatment decisions
por: Suwanvecho, Suthida, et al.
Publicado: (2021) -
Adoption of shared decision-making and clinical decision support for reducing cardiovascular disease risk in community health centers
por: Hauschildt, Jennifer, et al.
Publicado: (2023) -
Use of machine learning to predict clinical decision support compliance, reduce alert burden, and evaluate duplicate laboratory test ordering alerts
por: Baron, Jason M, et al.
Publicado: (2021)