Cargando…
Balancing Accuracy and Privacy in Federated Queries of Clinical Data Repositories: Algorithm Development and Validation
BACKGROUND: Over the past decade, the emergence of several large federated clinical data networks has enabled researchers to access data on millions of patients at dozens of health care organizations. Typically, queries are broadcast to each of the sites in the network, which then return aggregate c...
Autores principales: | Yu, Yun William, Weber, Griffin M |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7671849/ https://www.ncbi.nlm.nih.gov/pubmed/33141090 http://dx.doi.org/10.2196/18735 |
Ejemplares similares
-
Expected 10-anonymity of HyperLogLog sketches for federated queries of clinical data repositories
por: Tao, Ziye, et al.
Publicado: (2021) -
Balancing data privacy and usability in the federal statistical system
por: Hotz, V. Joseph, et al.
Publicado: (2022) -
Exploring the Relationship Between Privacy and Utility in Mobile Health: Algorithm Development and Validation via Simulations of Federated Learning, Differential Privacy, and External Attacks
por: Shen, Alexander, et al.
Publicado: (2023) -
A federated learning differential privacy algorithm for non-Gaussian heterogeneous data
por: Yang, Xinyu, et al.
Publicado: (2023) -
‘What’s in the NIDDK CDR?’—public query tools for the NIDDK central data repository
por: Pan, Huaqin, et al.
Publicado: (2013)