Cargando…
Development and Verification of a Digital Twin Patient Model to Predict Specific Treatment Response During the First 24 Hours of Sepsis
To develop and verify a digital twin model of critically ill patient using the causal artificial intelligence approach to predict the response to specific treatment during the first 24 hours of sepsis. DESIGN: Directed acyclic graphs were used to define explicitly the causal relationship among organ...
Autores principales: | Lal, Amos, Li, Guangxi, Cubro, Edin, Chalmers, Sarah, Li, Heyi, Herasevich, Vitaly, Dong, Yue, Pickering, Brian W., Kilickaya, Oguz, Gajic, Ognjen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Lippincott Williams & Wilkins
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7671877/ https://www.ncbi.nlm.nih.gov/pubmed/33225302 http://dx.doi.org/10.1097/CCE.0000000000000249 |
Ejemplares similares
-
Regulatory oversight and ethical concerns surrounding software as medical device (SaMD) and digital twin technology in healthcare
por: Lal, Amos, et al.
Publicado: (2022) -
Artificial intelligence and computer simulation models in critical illness
por: Lal, Amos, et al.
Publicado: (2020) -
Utility of AI models in critical care: union of man and the machine
por: Lal, Amos, et al.
Publicado: (2021) -
Customized Reference Ranges for Laboratory Values Decrease False Positive Alerts in Intensive Care Unit Patients
por: Kilickaya, Oguz, et al.
Publicado: (2014) -
Initial ventilator settings for critically ill patients
por: Kilickaya, Oguz, et al.
Publicado: (2013)