Cargando…
Isolated alpine habitats reveal disparate ecological drivers of taxonomic and functional beta-diversity of small mammal assemblages
The interpretation of patterns of biodiversity requires the disentanglement of geographical and environmental variables. Disjunct alpine communities are geographically isolated from one another but experience similar environmental impacts. Isolated homogenous habitats may promote speciation but cons...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Science Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7671915/ https://www.ncbi.nlm.nih.gov/pubmed/32918407 http://dx.doi.org/10.24272/j.issn.2095-8137.2020.085 |
_version_ | 1783611020064849920 |
---|---|
author | Song, Wen-Yu Li, Xue-You Chen, Zhong-Zheng Li, Quan Onditi, Kenneth Otieno He, Shui-Wang Jiang, Xue-Long |
author_facet | Song, Wen-Yu Li, Xue-You Chen, Zhong-Zheng Li, Quan Onditi, Kenneth Otieno He, Shui-Wang Jiang, Xue-Long |
author_sort | Song, Wen-Yu |
collection | PubMed |
description | The interpretation of patterns of biodiversity requires the disentanglement of geographical and environmental variables. Disjunct alpine communities are geographically isolated from one another but experience similar environmental impacts. Isolated homogenous habitats may promote speciation but constrain functional trait variation. In this study, we examined the hypothesis that dispersal limitation promotes taxonomic divergence, whereas habitat similarity in alpine mountains leads to functional convergence. We performed standardized field investigation to sample non-volant small mammals from 18 prominent alpine sites in the Three Parallel Rivers area. We estimated indices quantifying taxonomic and functional alpha- and beta-diversity, as well as beta-diversity components. We then assessed the respective importance of geographical and environmental predictors in explaining taxonomic and functional compositions. No evidence was found to show that species were more functionally similar than expected in local assemblages. However, the taxonomic turnover components were higher than functional ones (0.471±0.230 vs. 0.243±0.215), with nestedness components showing the opposite pattern (0.063±0.054 vs. 0.269±0.225). This indicated that differences in taxonomic compositions between sites occurred from replacement of functionally similar species. Geographical barriers were the key factor influencing both taxonomic total dissimilarity and turnover components, whereas functional beta-diversity was primarily explained by climatic factors such as minimum temperature of the coldest month. Our findings provide empirical evidence that taxonomic and functional diversity patterns can be independently driven by different ecological processes. Our results point to the importance of clarifying different components of beta-diversity to understand the underlying mechanisms of community assembly. These results also shed light on the assembly rules and ecological processes of terrestrial mammal communities in extreme environments. |
format | Online Article Text |
id | pubmed-7671915 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Science Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-76719152020-11-20 Isolated alpine habitats reveal disparate ecological drivers of taxonomic and functional beta-diversity of small mammal assemblages Song, Wen-Yu Li, Xue-You Chen, Zhong-Zheng Li, Quan Onditi, Kenneth Otieno He, Shui-Wang Jiang, Xue-Long Zool Res Articles The interpretation of patterns of biodiversity requires the disentanglement of geographical and environmental variables. Disjunct alpine communities are geographically isolated from one another but experience similar environmental impacts. Isolated homogenous habitats may promote speciation but constrain functional trait variation. In this study, we examined the hypothesis that dispersal limitation promotes taxonomic divergence, whereas habitat similarity in alpine mountains leads to functional convergence. We performed standardized field investigation to sample non-volant small mammals from 18 prominent alpine sites in the Three Parallel Rivers area. We estimated indices quantifying taxonomic and functional alpha- and beta-diversity, as well as beta-diversity components. We then assessed the respective importance of geographical and environmental predictors in explaining taxonomic and functional compositions. No evidence was found to show that species were more functionally similar than expected in local assemblages. However, the taxonomic turnover components were higher than functional ones (0.471±0.230 vs. 0.243±0.215), with nestedness components showing the opposite pattern (0.063±0.054 vs. 0.269±0.225). This indicated that differences in taxonomic compositions between sites occurred from replacement of functionally similar species. Geographical barriers were the key factor influencing both taxonomic total dissimilarity and turnover components, whereas functional beta-diversity was primarily explained by climatic factors such as minimum temperature of the coldest month. Our findings provide empirical evidence that taxonomic and functional diversity patterns can be independently driven by different ecological processes. Our results point to the importance of clarifying different components of beta-diversity to understand the underlying mechanisms of community assembly. These results also shed light on the assembly rules and ecological processes of terrestrial mammal communities in extreme environments. Science Press 2020-11-18 /pmc/articles/PMC7671915/ /pubmed/32918407 http://dx.doi.org/10.24272/j.issn.2095-8137.2020.085 Text en Editorial Office of Zoological Research, Kunming Institute of Zoology, Chinese Academy of Sciences http://creativecommons.org/licenses/by-nc/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Articles Song, Wen-Yu Li, Xue-You Chen, Zhong-Zheng Li, Quan Onditi, Kenneth Otieno He, Shui-Wang Jiang, Xue-Long Isolated alpine habitats reveal disparate ecological drivers of taxonomic and functional beta-diversity of small mammal assemblages |
title | Isolated alpine habitats reveal disparate ecological drivers of taxonomic and functional beta-diversity of small mammal assemblages |
title_full | Isolated alpine habitats reveal disparate ecological drivers of taxonomic and functional beta-diversity of small mammal assemblages |
title_fullStr | Isolated alpine habitats reveal disparate ecological drivers of taxonomic and functional beta-diversity of small mammal assemblages |
title_full_unstemmed | Isolated alpine habitats reveal disparate ecological drivers of taxonomic and functional beta-diversity of small mammal assemblages |
title_short | Isolated alpine habitats reveal disparate ecological drivers of taxonomic and functional beta-diversity of small mammal assemblages |
title_sort | isolated alpine habitats reveal disparate ecological drivers of taxonomic and functional beta-diversity of small mammal assemblages |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7671915/ https://www.ncbi.nlm.nih.gov/pubmed/32918407 http://dx.doi.org/10.24272/j.issn.2095-8137.2020.085 |
work_keys_str_mv | AT songwenyu isolatedalpinehabitatsrevealdisparateecologicaldriversoftaxonomicandfunctionalbetadiversityofsmallmammalassemblages AT lixueyou isolatedalpinehabitatsrevealdisparateecologicaldriversoftaxonomicandfunctionalbetadiversityofsmallmammalassemblages AT chenzhongzheng isolatedalpinehabitatsrevealdisparateecologicaldriversoftaxonomicandfunctionalbetadiversityofsmallmammalassemblages AT liquan isolatedalpinehabitatsrevealdisparateecologicaldriversoftaxonomicandfunctionalbetadiversityofsmallmammalassemblages AT onditikennethotieno isolatedalpinehabitatsrevealdisparateecologicaldriversoftaxonomicandfunctionalbetadiversityofsmallmammalassemblages AT heshuiwang isolatedalpinehabitatsrevealdisparateecologicaldriversoftaxonomicandfunctionalbetadiversityofsmallmammalassemblages AT jiangxuelong isolatedalpinehabitatsrevealdisparateecologicaldriversoftaxonomicandfunctionalbetadiversityofsmallmammalassemblages |