Cargando…

Non-commutative Calculus, Optimal Transport and Functional Inequalities in Dissipative Quantum Systems

We study dynamical optimal transport metrics between density matrices associated to symmetric Dirichlet forms on finite-dimensional [Formula: see text] -algebras. Our setting covers arbitrary skew-derivations and it provides a unified framework that simultaneously generalizes recently constructed tr...

Descripción completa

Detalles Bibliográficos
Autores principales: Carlen, Eric A., Maas, Jan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer US 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7672011/
https://www.ncbi.nlm.nih.gov/pubmed/33223567
http://dx.doi.org/10.1007/s10955-019-02434-w
_version_ 1783611039221284864
author Carlen, Eric A.
Maas, Jan
author_facet Carlen, Eric A.
Maas, Jan
author_sort Carlen, Eric A.
collection PubMed
description We study dynamical optimal transport metrics between density matrices associated to symmetric Dirichlet forms on finite-dimensional [Formula: see text] -algebras. Our setting covers arbitrary skew-derivations and it provides a unified framework that simultaneously generalizes recently constructed transport metrics for Markov chains, Lindblad equations, and the Fermi Ornstein–Uhlenbeck semigroup. We develop a non-nommutative differential calculus that allows us to obtain non-commutative Ricci curvature bounds, logarithmic Sobolev inequalities, transport-entropy inequalities, and spectral gap estimates.
format Online
Article
Text
id pubmed-7672011
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Springer US
record_format MEDLINE/PubMed
spelling pubmed-76720112020-11-20 Non-commutative Calculus, Optimal Transport and Functional Inequalities in Dissipative Quantum Systems Carlen, Eric A. Maas, Jan J Stat Phys Article We study dynamical optimal transport metrics between density matrices associated to symmetric Dirichlet forms on finite-dimensional [Formula: see text] -algebras. Our setting covers arbitrary skew-derivations and it provides a unified framework that simultaneously generalizes recently constructed transport metrics for Markov chains, Lindblad equations, and the Fermi Ornstein–Uhlenbeck semigroup. We develop a non-nommutative differential calculus that allows us to obtain non-commutative Ricci curvature bounds, logarithmic Sobolev inequalities, transport-entropy inequalities, and spectral gap estimates. Springer US 2019-11-27 2020 /pmc/articles/PMC7672011/ /pubmed/33223567 http://dx.doi.org/10.1007/s10955-019-02434-w Text en © The Author(s) 2019 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
spellingShingle Article
Carlen, Eric A.
Maas, Jan
Non-commutative Calculus, Optimal Transport and Functional Inequalities in Dissipative Quantum Systems
title Non-commutative Calculus, Optimal Transport and Functional Inequalities in Dissipative Quantum Systems
title_full Non-commutative Calculus, Optimal Transport and Functional Inequalities in Dissipative Quantum Systems
title_fullStr Non-commutative Calculus, Optimal Transport and Functional Inequalities in Dissipative Quantum Systems
title_full_unstemmed Non-commutative Calculus, Optimal Transport and Functional Inequalities in Dissipative Quantum Systems
title_short Non-commutative Calculus, Optimal Transport and Functional Inequalities in Dissipative Quantum Systems
title_sort non-commutative calculus, optimal transport and functional inequalities in dissipative quantum systems
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7672011/
https://www.ncbi.nlm.nih.gov/pubmed/33223567
http://dx.doi.org/10.1007/s10955-019-02434-w
work_keys_str_mv AT carlenerica noncommutativecalculusoptimaltransportandfunctionalinequalitiesindissipativequantumsystems
AT maasjan noncommutativecalculusoptimaltransportandfunctionalinequalitiesindissipativequantumsystems