Cargando…

Operant conditioning of motor cortex neurons reveals neuron-subtype-specific responses in a brain-machine interface task

Operant conditioning is implemented in brain-machine interfaces (BMI) to induce rapid volitional modulation of single neuron activity to control arbitrary mappings with an external actuator. However, intrinsic factors of the volitional controller (i.e. the brain) or the output stage (i.e. individual...

Descripción completa

Detalles Bibliográficos
Autores principales: Garcia-Garcia, Martha Gabriela, Marquez-Chin, Cesar, Popovic, Milos R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7672061/
https://www.ncbi.nlm.nih.gov/pubmed/33203973
http://dx.doi.org/10.1038/s41598-020-77090-2
Descripción
Sumario:Operant conditioning is implemented in brain-machine interfaces (BMI) to induce rapid volitional modulation of single neuron activity to control arbitrary mappings with an external actuator. However, intrinsic factors of the volitional controller (i.e. the brain) or the output stage (i.e. individual neurons) might hinder performance of BMIs with more complex mappings between hundreds of neurons and actuators with multiple degrees of freedom. Improved performance might be achieved by studying these intrinsic factors in the context of BMI control. In this study, we investigated how neuron subtypes respond and adapt to a given BMI task. We conditioned single cortical neurons in a BMI task. Recorded neurons were classified into bursting and non-bursting subtypes based on their spike-train autocorrelation. Both neuron subtypes had similar improvement in performance and change in average firing rate. However, in bursting neurons, the activity leading up to a reward increased progressively throughout conditioning, while the response of non-bursting neurons did not change during conditioning. These results highlight the need to characterize neuron-subtype-specific responses in a variety of tasks, which might ultimately inform the design and implementation of BMIs.