Cargando…
A symmoriiform from the Late Devonian of Morocco demonstrates a derived jaw function in ancient chondrichthyans
The Palaeozoic record of chondrichthyans (sharks, rays, chimaeras, extinct relatives) and thus our knowledge of their anatomy and functional morphology is poor because of their predominantly cartilaginous skeletons. Here, we report a previously undescribed symmoriiform shark, Ferromirum oukherbouchi...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7672094/ https://www.ncbi.nlm.nih.gov/pubmed/33203942 http://dx.doi.org/10.1038/s42003-020-01394-2 |
Sumario: | The Palaeozoic record of chondrichthyans (sharks, rays, chimaeras, extinct relatives) and thus our knowledge of their anatomy and functional morphology is poor because of their predominantly cartilaginous skeletons. Here, we report a previously undescribed symmoriiform shark, Ferromirum oukherbouchi, from the Late Devonian of the Anti-Atlas. Computed tomography scanning reveals the undeformed shape of the jaws and hyoid arch, which are of a kind often used to represent primitive conditions for jawed vertebrates. Of critical importance, these closely fitting cartilages preclude the repeatedly hypothesized presence of a complete gill between mandibular and hyoid arches. We show that the jaw articulation is specialized and drives mandibular rotation outward when the mouth opens, and inward upon closure. The resultant eversion and inversion of the lower dentition presents a greater number of teeth to prey through the bite-cycle. This suggests an increased functional and ecomorphological disparity among chondrichthyans preceding and surviving the end-Devonian extinctions. |
---|