Cargando…
Identification of Diseases in Newborns Using Advanced Acoustic Features of Cry Signals
Our challenge in the current study is to extend research on the cries of newborns for the early diagnosis of different pathologies. This paper proposes a recognition system for healthy and pathological cries using a probabilistic neural network classifier. Two different kinds of features have been u...
Autores principales: | Kheddache, Yasmina, Tadj, Chakib |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Ltd.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7672377/ https://www.ncbi.nlm.nih.gov/pubmed/33281921 http://dx.doi.org/10.1016/j.bspc.2019.01.010 |
Ejemplares similares
-
An Entropy-Based Architecture for Detection of Sepsis in Newborn Cry Diagnostic Systems
por: Khalilzad, Zahra, et al.
Publicado: (2022) -
Newborn Cry-Based Diagnostic System to Distinguish between Sepsis and Respiratory Distress Syndrome Using Combined Acoustic Features
por: Khalilzad, Zahra, et al.
Publicado: (2022) -
Using CCA-Fused Cepstral Features in a Deep Learning-Based Cry Diagnostic System for Detecting an Ensemble of Pathologies in Newborns
por: Khalilzad, Zahra, et al.
Publicado: (2023) -
Infant Cry Signal Diagnostic System Using Deep Learning and Fused Features
por: Zayed, Yara, et al.
Publicado: (2023) -
Expiratory and Inspiratory Cries Detection Using Different Signals' Decomposition Techniques
por: Abou-Abbas, Lina, et al.
Publicado: (2017)