Cargando…
Predicting single-cell gene expression profiles of imaging flow cytometry data with machine learning
High-content imaging and single-cell genomics are two of the most prominent high-throughput technologies for studying cellular properties and functions at scale. Recent studies have demonstrated that information in large imaging datasets can be used to estimate gene mutations and to predict the cell...
Autores principales: | Chlis, Nikolaos-Kosmas, Rausch, Lisa, Brocker, Thomas, Kranich, Jan, Theis, Fabian J |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7672460/ https://www.ncbi.nlm.nih.gov/pubmed/33119742 http://dx.doi.org/10.1093/nar/gkaa926 |
Ejemplares similares
-
In vivo identification of apoptotic and
extracellular vesicle-bound live cells using image-based deep learning
por: Kranich, Jan, et al.
Publicado: (2020) -
Explainable machine learning for profiling the immunological synapse and functional characterization of therapeutic antibodies
por: Shetab Boushehri, Sayedali, et al.
Publicado: (2023) -
Model-based branching point detection in single-cell data by K-branches clustering
por: Chlis, Nikolaos K, et al.
Publicado: (2017) -
Phosphatidylserine-positive extracellular vesicles boost effector CD8(+) T cell responses during viral infection
por: Rausch, Lisa, et al.
Publicado: (2023) -
A sparse deep learning approach for automatic segmentation of human vasculature in multispectral optoacoustic tomography
por: Chlis, Nikolaos-Kosmas, et al.
Publicado: (2020)