Cargando…
GigaSOM.jl: High-performance clustering and visualization of huge cytometry datasets
BACKGROUND: The amount of data generated in large clinical and phenotyping studies that use single-cell cytometry is constantly growing. Recent technological advances allow the easy generation of data with hundreds of millions of single-cell data points with >40 parameters, originating from thous...
Autores principales: | Kratochvíl, Miroslav, Hunewald, Oliver, Heirendt, Laurent, Verissimo, Vasco, Vondrášek, Jiří, Satagopam, Venkata P, Schneider, Reinhard, Trefois, Christophe, Ollert, Markus |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7672468/ https://www.ncbi.nlm.nih.gov/pubmed/33205814 http://dx.doi.org/10.1093/gigascience/giaa127 |
Ejemplares similares
-
ShinySOM: graphical SOM-based analysis of single-cell cytometry data
por: Kratochvíl, Miroslav, et al.
Publicado: (2020) -
COBREXA.jl: constraint-based reconstruction and exascale analysis
por: Kratochvíl, Miroslav, et al.
Publicado: (2021) -
Generalized EmbedSOM on quadtree-structured self-organizing maps
por: Kratochvíl, Miroslav, et al.
Publicado: (2020) -
DistributedFBA.jl: high-level, high-performance flux balance analysis in Julia
por: Heirendt, Laurent, et al.
Publicado: (2017) -
Sachem: a chemical cartridge for high-performance substructure search
por: Kratochvíl, Miroslav, et al.
Publicado: (2018)