Cargando…

Hybrid Boron-Carbon Chemistry

The recently proved one-to-one structural equivalence between a conjugated hydrocarbon C(n)H(m) and the corresponding borane B(n)H(m)(+n) is applied here to hybrid systems, where each C=C double bond in the hydrocarbon is consecutively substituted by planar B(H(2))B moieties from diborane(6). Quantu...

Descripción completa

Detalles Bibliográficos
Autores principales: Oliva-Enrich, Josep M., Alkorta, Ibon, Elguero, José
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7672580/
https://www.ncbi.nlm.nih.gov/pubmed/33138268
http://dx.doi.org/10.3390/molecules25215026
Descripción
Sumario:The recently proved one-to-one structural equivalence between a conjugated hydrocarbon C(n)H(m) and the corresponding borane B(n)H(m)(+n) is applied here to hybrid systems, where each C=C double bond in the hydrocarbon is consecutively substituted by planar B(H(2))B moieties from diborane(6). Quantum chemical computations with the B3LYP/cc-pVTZ method show that the structural equivalences are maintained along the substitutions, even for non-planar systems. We use as benchmark aromatic and antiaromatic (poly)cyclic conjugated hydrocarbons: cyclobutadiene, benzene, cyclooctatetraene, pentalene, benzocyclobutadiene, naphthalene and azulene. The transformation of these conjugated hydrocarbons to the corresponding boranes is analyzed from the viewpoint of geometry and electronic structure.