Cargando…

Bioprospecting the antimicrobial, antibiofilm and antiproliferative activity of Symplocos racemosa Roxb. Bark phytoconstituents along with their biosafety evaluation and detection of antimicrobial components by GC-MS

BACKGROUND: Plants provide a ray of hope to combat the ever increasing antibiotic resistance and Symplocos racemosa is a valuable medicinal plant. The study focused on highlighting the importance of this plant’s phytoconstituents as potential source of novel antimicrobials against planktonic as well...

Descripción completa

Detalles Bibliográficos
Autores principales: Sood, Henna, Kumar, Yashwant, Gupta, Vipan Kumar, Arora, Daljit Singh
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7672880/
https://www.ncbi.nlm.nih.gov/pubmed/33203457
http://dx.doi.org/10.1186/s40360-020-00453-y
_version_ 1783611224009736192
author Sood, Henna
Kumar, Yashwant
Gupta, Vipan Kumar
Arora, Daljit Singh
author_facet Sood, Henna
Kumar, Yashwant
Gupta, Vipan Kumar
Arora, Daljit Singh
author_sort Sood, Henna
collection PubMed
description BACKGROUND: Plants provide a ray of hope to combat the ever increasing antibiotic resistance and Symplocos racemosa is a valuable medicinal plant. The study focused on highlighting the importance of this plant’s phytoconstituents as potential source of novel antimicrobials against planktonic as well as biofilm forming microorganisms, along with their antiproliferative activity. The biosafety of the phytoconstituents was also established, followed by detection of probable antimicrobial components. METHODS: The best organic extractant and major groups of phytoconstituents were tested for their antimicrobial activity against reference microbial strains and drug-resistant clinical isolates. The anti-proliferative potential of the most active group of phytoconstituents was evaluated against cancerous cell lines. The in vitro biosafety of phytoconstituents was evaluated by Ames and MTT assay, while in vivo biosafety of the most active phytoconstituents, i.e., flavonoids was determined by acute oral toxicity. Further, the probable antimicrobial components in the flavonoids were detected by TLC and GC-MS. RESULTS: Ethyl acetate extract was the most effective among various organic extracts, whereas phytoconstituents such as flavonoids, cardiac glycosides, saponins, tannins, triterpenes and phytosterols were the major groups present, with flavonoids being the most potent antimicrobials. The phytoconstituents displayed a significant antibiofilm potential, as exhibited by inhibition of initial cell attachment, disruption of the pre-formed biofilms and reduced metabolic activity of biofilms. The phytoconstituents were significantly active against the drug-resistant strains of E.coli, MRSA and Salmonella spp. Further, flavonoids showed significant cytotoxic effect against the cancerous cell lines but were non-cytotoxic against Vero (normal) cell line. All the test preparations were biosafe, as depicted by the Ames test and MTT assay. Also, flavonoids did not induce any abnormality in body weight, clinical signs, biochemical parameters and organs’ histopathology of the Swiss albino mice during in vivo acute oral toxicity studies. The flavonoids were resolved into 4 bands (S1-S4), where S3 was the most active and its GC-MS analysis revealed the presence of a number of compounds, where Bicyclo [2.2.1]heptan-2-one,1,7,7-trimethyl-, (1S)- was the most abundant. CONCLUSIONS: These findings suggest that the phytoconstituents from Symplocos racemosa bark could act as potential source of antimicrobial as well as antiproliferative metabolites.
format Online
Article
Text
id pubmed-7672880
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-76728802020-11-19 Bioprospecting the antimicrobial, antibiofilm and antiproliferative activity of Symplocos racemosa Roxb. Bark phytoconstituents along with their biosafety evaluation and detection of antimicrobial components by GC-MS Sood, Henna Kumar, Yashwant Gupta, Vipan Kumar Arora, Daljit Singh BMC Pharmacol Toxicol Research Article BACKGROUND: Plants provide a ray of hope to combat the ever increasing antibiotic resistance and Symplocos racemosa is a valuable medicinal plant. The study focused on highlighting the importance of this plant’s phytoconstituents as potential source of novel antimicrobials against planktonic as well as biofilm forming microorganisms, along with their antiproliferative activity. The biosafety of the phytoconstituents was also established, followed by detection of probable antimicrobial components. METHODS: The best organic extractant and major groups of phytoconstituents were tested for their antimicrobial activity against reference microbial strains and drug-resistant clinical isolates. The anti-proliferative potential of the most active group of phytoconstituents was evaluated against cancerous cell lines. The in vitro biosafety of phytoconstituents was evaluated by Ames and MTT assay, while in vivo biosafety of the most active phytoconstituents, i.e., flavonoids was determined by acute oral toxicity. Further, the probable antimicrobial components in the flavonoids were detected by TLC and GC-MS. RESULTS: Ethyl acetate extract was the most effective among various organic extracts, whereas phytoconstituents such as flavonoids, cardiac glycosides, saponins, tannins, triterpenes and phytosterols were the major groups present, with flavonoids being the most potent antimicrobials. The phytoconstituents displayed a significant antibiofilm potential, as exhibited by inhibition of initial cell attachment, disruption of the pre-formed biofilms and reduced metabolic activity of biofilms. The phytoconstituents were significantly active against the drug-resistant strains of E.coli, MRSA and Salmonella spp. Further, flavonoids showed significant cytotoxic effect against the cancerous cell lines but were non-cytotoxic against Vero (normal) cell line. All the test preparations were biosafe, as depicted by the Ames test and MTT assay. Also, flavonoids did not induce any abnormality in body weight, clinical signs, biochemical parameters and organs’ histopathology of the Swiss albino mice during in vivo acute oral toxicity studies. The flavonoids were resolved into 4 bands (S1-S4), where S3 was the most active and its GC-MS analysis revealed the presence of a number of compounds, where Bicyclo [2.2.1]heptan-2-one,1,7,7-trimethyl-, (1S)- was the most abundant. CONCLUSIONS: These findings suggest that the phytoconstituents from Symplocos racemosa bark could act as potential source of antimicrobial as well as antiproliferative metabolites. BioMed Central 2020-11-17 /pmc/articles/PMC7672880/ /pubmed/33203457 http://dx.doi.org/10.1186/s40360-020-00453-y Text en © The Author(s) 2020 Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
spellingShingle Research Article
Sood, Henna
Kumar, Yashwant
Gupta, Vipan Kumar
Arora, Daljit Singh
Bioprospecting the antimicrobial, antibiofilm and antiproliferative activity of Symplocos racemosa Roxb. Bark phytoconstituents along with their biosafety evaluation and detection of antimicrobial components by GC-MS
title Bioprospecting the antimicrobial, antibiofilm and antiproliferative activity of Symplocos racemosa Roxb. Bark phytoconstituents along with their biosafety evaluation and detection of antimicrobial components by GC-MS
title_full Bioprospecting the antimicrobial, antibiofilm and antiproliferative activity of Symplocos racemosa Roxb. Bark phytoconstituents along with their biosafety evaluation and detection of antimicrobial components by GC-MS
title_fullStr Bioprospecting the antimicrobial, antibiofilm and antiproliferative activity of Symplocos racemosa Roxb. Bark phytoconstituents along with their biosafety evaluation and detection of antimicrobial components by GC-MS
title_full_unstemmed Bioprospecting the antimicrobial, antibiofilm and antiproliferative activity of Symplocos racemosa Roxb. Bark phytoconstituents along with their biosafety evaluation and detection of antimicrobial components by GC-MS
title_short Bioprospecting the antimicrobial, antibiofilm and antiproliferative activity of Symplocos racemosa Roxb. Bark phytoconstituents along with their biosafety evaluation and detection of antimicrobial components by GC-MS
title_sort bioprospecting the antimicrobial, antibiofilm and antiproliferative activity of symplocos racemosa roxb. bark phytoconstituents along with their biosafety evaluation and detection of antimicrobial components by gc-ms
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7672880/
https://www.ncbi.nlm.nih.gov/pubmed/33203457
http://dx.doi.org/10.1186/s40360-020-00453-y
work_keys_str_mv AT soodhenna bioprospectingtheantimicrobialantibiofilmandantiproliferativeactivityofsymplocosracemosaroxbbarkphytoconstituentsalongwiththeirbiosafetyevaluationanddetectionofantimicrobialcomponentsbygcms
AT kumaryashwant bioprospectingtheantimicrobialantibiofilmandantiproliferativeactivityofsymplocosracemosaroxbbarkphytoconstituentsalongwiththeirbiosafetyevaluationanddetectionofantimicrobialcomponentsbygcms
AT guptavipankumar bioprospectingtheantimicrobialantibiofilmandantiproliferativeactivityofsymplocosracemosaroxbbarkphytoconstituentsalongwiththeirbiosafetyevaluationanddetectionofantimicrobialcomponentsbygcms
AT aroradaljitsingh bioprospectingtheantimicrobialantibiofilmandantiproliferativeactivityofsymplocosracemosaroxbbarkphytoconstituentsalongwiththeirbiosafetyevaluationanddetectionofantimicrobialcomponentsbygcms