Cargando…
Automatic classification and segmentation of single-molecule fluorescence time traces with deep learning
Traces from single-molecule fluorescence microscopy (SMFM) experiments exhibit photophysical artifacts that typically necessitate human expert screening, which is time-consuming and introduces potential for user-dependent expectation bias. Here, we use deep learning to develop a rapid, automatic SMF...
Autores principales: | Li, Jieming, Zhang, Leyou, Johnson-Buck, Alexander, Walter, Nils G. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7673028/ https://www.ncbi.nlm.nih.gov/pubmed/33203879 http://dx.doi.org/10.1038/s41467-020-19673-1 |
Ejemplares similares
-
Deep-learning-based automatic segmentation and classification for craniopharyngiomas
por: Yan, Xiaorong, et al.
Publicado: (2023) -
Automatic Segmentation and Classification for Antinuclear Antibody Images Based on Deep Learning
por: Xie, Qinghua, et al.
Publicado: (2023) -
Automatic Segmentation with Deep Learning in Radiotherapy
por: Isaksson, Lars Johannes, et al.
Publicado: (2023) -
Automatic segmentation of inferior alveolar canal with ambiguity classification in panoramic images using deep learning
por: Yang, Shuo, et al.
Publicado: (2023) -
Deep learning for automatic segmentation of thigh and leg muscles
por: Agosti, Abramo, et al.
Publicado: (2021)