Cargando…
Learning by task repetition enhances object individuation and memorization in the elderly
A decline in visuospatial Working Memory (vWM) is a hallmark of cognitive aging across various tasks, and facing this decline has become the target of several studies. In the current study we tested whether older adults can benefit from task repetition in order to improve their performance in a vWM...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7673120/ https://www.ncbi.nlm.nih.gov/pubmed/33203888 http://dx.doi.org/10.1038/s41598-020-75297-x |
Sumario: | A decline in visuospatial Working Memory (vWM) is a hallmark of cognitive aging across various tasks, and facing this decline has become the target of several studies. In the current study we tested whether older adults can benefit from task repetition in order to improve their performance in a vWM task. While learning by task repetition has been shown to improve vWM performance in young adulthood, little is known on whether a similar enhancement can be achieved also by the aging population. By combining different behavioral and electrophysiological measures, we investigated whether practicing a specific task (delayed match-to-sample judgement) over four consecutive sessions could improve vWM in healthy aging, and which are the neurophysiological and cognitive mechanisms modulated by learning. Behavioral data revealed that task repetition boosted performance in older participants, both in terms of sensitivity to change (as revealed by d’ measures) as well as capacity estimate (as measured by k values). At the electrophysiological level, results indicated that only after task repetition both target individuation (as evidenced by the N2pc) and vWM maintenance (as reflected by the CDA) were modulated by target numerosity. Our results suggest that repetition learning is effective in enhancing vWM in aging and acts through modifications at different stages of stimulus processing. |
---|