Cargando…
Ensemble dimensionality reduction and feature gene extraction for single-cell RNA-seq data
Single-cell RNA sequencing (scRNA-seq) technologies allow researchers to uncover the biological states of a single cell at high resolution. For computational efficiency and easy visualization, dimensionality reduction is necessary to capture gene expression patterns in low-dimensional space. Here we...
Autores principales: | Sun, Xiaoxiao, Liu, Yiwen, An, Lingling |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7673125/ https://www.ncbi.nlm.nih.gov/pubmed/33203837 http://dx.doi.org/10.1038/s41467-020-19465-7 |
Ejemplares similares
-
Analysis of Ensemble Feature Selection for Correlated High-Dimensional RNA-Seq Cancer Data
por: Polewko-Klim, Aneta, et al.
Publicado: (2020) -
A Comparison for Dimensionality Reduction Methods of Single-Cell RNA-seq Data
por: Xiang, Ruizhi, et al.
Publicado: (2021) -
Autoencoder-based cluster ensembles for single-cell RNA-seq data analysis
por: Geddes, Thomas A., et al.
Publicado: (2019) -
Incorporating RNA-seq data into the zebrafish Ensembl genebuild
por: Collins, John E., et al.
Publicado: (2012) -
Accuracy, robustness and scalability of dimensionality reduction methods for single-cell RNA-seq analysis
por: Sun, Shiquan, et al.
Publicado: (2019)