Cargando…
Convolutional neuronal networks combined with X-ray phase-contrast imaging for a fast and observer-independent discrimination of cartilage and liver diseases stages
We applied transfer learning using Convolutional Neuronal Networks to high resolution X-ray phase contrast computed tomography datasets and tested the potential of the systems to accurately classify Computed Tomography images of different stages of two diseases, i.e. osteoarthritis and liver fibrosi...
Autores principales: | Stroebel, Johannes, Horng, Annie, Armbruster, Marco, Mittone, Alberto, Reiser, Maximilian, Bravin, Alberto, Coan, Paola |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7673137/ https://www.ncbi.nlm.nih.gov/pubmed/33203975 http://dx.doi.org/10.1038/s41598-020-76937-y |
Ejemplares similares
-
Multiscale X-ray phase contrast imaging of human cartilage for investigating osteoarthritis formation
por: Horng, Annie, et al.
Publicado: (2021) -
Detection of Post-Therapeutic Effects in Breast Carcinoma Using Hard X-Ray Index of Refraction Computed Tomography – A Feasibility Study
por: Grandl, Susanne, et al.
Publicado: (2016) -
In-situ visualization of sound-induced otolith motion using hard X-ray phase contrast imaging
por: Schulz-Mirbach, Tanja, et al.
Publicado: (2018) -
Reduced volume of diabetic pancreatic islets in rodents detected by synchrotron X-ray phase-contrast microtomography and deep learning network
por: Guo, Qingqing, et al.
Publicado: (2023) -
X-ray phase contrast tomography for the investigation of amyotrophic lateral sclerosis
por: Begani Provinciali, Ginevra, et al.
Publicado: (2020)