Cargando…

A transcriptome profile in gallbladder cancer based on annotation analysis of microarray studies

The purpose of the present study was to identify aberrantly expressed genes for gallbladder cancer based on the annotation analysis of microarray studies and to explore their potential functions. Differential gene expression was investigated in cholesterol polyps, gallbladder adenoma and gallbladder...

Descripción completa

Detalles Bibliográficos
Autores principales: Ge, Chunlin, Zhu, Xuan, Niu, Xing, Zhang, Bingye, Chen, Lijie
Formato: Online Artículo Texto
Lenguaje:English
Publicado: D.A. Spandidos 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7673323/
https://www.ncbi.nlm.nih.gov/pubmed/33179115
http://dx.doi.org/10.3892/mmr.2020.11663
Descripción
Sumario:The purpose of the present study was to identify aberrantly expressed genes for gallbladder cancer based on the annotation analysis of microarray studies and to explore their potential functions. Differential gene expression was investigated in cholesterol polyps, gallbladder adenoma and gallbladder cancer using microarrays. Subsequently, microarray results were comprehensively analyzed. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed to determine the affected biological processes or pathways. Differentially expressed genes (DEGs) of cholesterol polyps, gallbladder adenoma and gallbladder cancer were identified. Following comprehensive analysis, 14 genes were found to be differentially expressed in the gallbladder wall of both gallbladder cancer and gallbladder adenoma. The 20 most significantly upregulated genes were only upregulated in the gallbladder wall of gallbladder cancer, but not in the gallbladder wall of cholesterol polyps and gallbladder adenoma. In addition, 182 DEGs were upregulated in the gallbladder wall of gallbladder adenoma compared with the gallbladder wall of cholesterol polyps. A total of 20 most significant DEGs were found in both the tumor and gallbladder wall of gallbladder cancer. In addition, the most significant DEGs that were identified were only upregulated in the tumor of gallbladder cancer. GO and KEGG analysis indicated that the aforementioned DEGs could participate in numerous biological processes or pathways associated with the development of gallbladder cancer. The present findings will help improve the current understanding of tumorigenesis and the development of gallbladder cancer.