Cargando…
Sex-Dependent Effects on Liver Inflammation and Gut Microbial Dysbiosis After Continuous Developmental Exposure to Trichloroethylene in Autoimmune-Prone Mice
Trichloroethylene (TCE) is a common environmental toxicant linked with hypersensitivity and autoimmune responses in humans and animal models. While autoimmune diseases are more common in females, mechanisms behind this disparity are not clear. Recent evidence suggests that autoimmunity may be increa...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7673404/ https://www.ncbi.nlm.nih.gov/pubmed/33250767 http://dx.doi.org/10.3389/fphar.2020.569008 |
_version_ | 1783611312896475136 |
---|---|
author | Blossom, Sarah J. Gokulan, Kuppan Arnold, Matthew Khare, Sangeeta |
author_facet | Blossom, Sarah J. Gokulan, Kuppan Arnold, Matthew Khare, Sangeeta |
author_sort | Blossom, Sarah J. |
collection | PubMed |
description | Trichloroethylene (TCE) is a common environmental toxicant linked with hypersensitivity and autoimmune responses in humans and animal models. While autoimmune diseases are more common in females, mechanisms behind this disparity are not clear. Recent evidence suggests that autoimmunity may be increasing in males, and occupational studies have shown that TCE-mediated hypersensitivity responses occur just as often in males. Previous experimental studies in autoimmune-prone MRL(+/+) mice have focused on responses in females. However, it is important to include both males and females in order to better understand sex-disparity in autoimmune disease. In addition, because of an alarming increase in autoimmunity in adolescents, developmental and/or early life exposures to immune-enhancing environmental pollutants should also be considered. Using MRL(+/+) mice, we hypothesized that TCE would alter markers related to autoimmunity to a greater degree in female mice relative to male mice, and that TCE would enhance these effects. Mice were continuously exposed to either TCE or vehicle beginning at gestation, continuing during lactation, and directly in the drinking water. Both male and female offspring were evaluated at 7 weeks of age. Sex-specific effects were evident. Female mice were more likely than males to show enhanced CD4(+) T cell cytokine responses (e.g., IL-4 and IFN-γ). Although none of the animals developed pathological or serological signs of autoimmune hepatitis-like disease, TCE-exposed female mice were more likely than males in either group to express higher levels of biomarkers in the liver related to regeneration/repair and proliferation. Levels of bacterial populations in the intestinal ileum were also altered by TCE exposure and were more prominent in females as compared to males. Thus, our expectations were correct in that young adult female mice developmentally exposed to TCE were more likely to exhibit alterations in immunological and gut/liver endpoints compared to male mice. |
format | Online Article Text |
id | pubmed-7673404 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-76734042020-11-26 Sex-Dependent Effects on Liver Inflammation and Gut Microbial Dysbiosis After Continuous Developmental Exposure to Trichloroethylene in Autoimmune-Prone Mice Blossom, Sarah J. Gokulan, Kuppan Arnold, Matthew Khare, Sangeeta Front Pharmacol Pharmacology Trichloroethylene (TCE) is a common environmental toxicant linked with hypersensitivity and autoimmune responses in humans and animal models. While autoimmune diseases are more common in females, mechanisms behind this disparity are not clear. Recent evidence suggests that autoimmunity may be increasing in males, and occupational studies have shown that TCE-mediated hypersensitivity responses occur just as often in males. Previous experimental studies in autoimmune-prone MRL(+/+) mice have focused on responses in females. However, it is important to include both males and females in order to better understand sex-disparity in autoimmune disease. In addition, because of an alarming increase in autoimmunity in adolescents, developmental and/or early life exposures to immune-enhancing environmental pollutants should also be considered. Using MRL(+/+) mice, we hypothesized that TCE would alter markers related to autoimmunity to a greater degree in female mice relative to male mice, and that TCE would enhance these effects. Mice were continuously exposed to either TCE or vehicle beginning at gestation, continuing during lactation, and directly in the drinking water. Both male and female offspring were evaluated at 7 weeks of age. Sex-specific effects were evident. Female mice were more likely than males to show enhanced CD4(+) T cell cytokine responses (e.g., IL-4 and IFN-γ). Although none of the animals developed pathological or serological signs of autoimmune hepatitis-like disease, TCE-exposed female mice were more likely than males in either group to express higher levels of biomarkers in the liver related to regeneration/repair and proliferation. Levels of bacterial populations in the intestinal ileum were also altered by TCE exposure and were more prominent in females as compared to males. Thus, our expectations were correct in that young adult female mice developmentally exposed to TCE were more likely to exhibit alterations in immunological and gut/liver endpoints compared to male mice. Frontiers Media S.A. 2020-10-29 /pmc/articles/PMC7673404/ /pubmed/33250767 http://dx.doi.org/10.3389/fphar.2020.569008 Text en Copyright © 2020 Blossom, Gokulan, Arnold and Khare http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Pharmacology Blossom, Sarah J. Gokulan, Kuppan Arnold, Matthew Khare, Sangeeta Sex-Dependent Effects on Liver Inflammation and Gut Microbial Dysbiosis After Continuous Developmental Exposure to Trichloroethylene in Autoimmune-Prone Mice |
title | Sex-Dependent Effects on Liver Inflammation and Gut Microbial Dysbiosis After Continuous Developmental Exposure to Trichloroethylene in Autoimmune-Prone Mice |
title_full | Sex-Dependent Effects on Liver Inflammation and Gut Microbial Dysbiosis After Continuous Developmental Exposure to Trichloroethylene in Autoimmune-Prone Mice |
title_fullStr | Sex-Dependent Effects on Liver Inflammation and Gut Microbial Dysbiosis After Continuous Developmental Exposure to Trichloroethylene in Autoimmune-Prone Mice |
title_full_unstemmed | Sex-Dependent Effects on Liver Inflammation and Gut Microbial Dysbiosis After Continuous Developmental Exposure to Trichloroethylene in Autoimmune-Prone Mice |
title_short | Sex-Dependent Effects on Liver Inflammation and Gut Microbial Dysbiosis After Continuous Developmental Exposure to Trichloroethylene in Autoimmune-Prone Mice |
title_sort | sex-dependent effects on liver inflammation and gut microbial dysbiosis after continuous developmental exposure to trichloroethylene in autoimmune-prone mice |
topic | Pharmacology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7673404/ https://www.ncbi.nlm.nih.gov/pubmed/33250767 http://dx.doi.org/10.3389/fphar.2020.569008 |
work_keys_str_mv | AT blossomsarahj sexdependenteffectsonliverinflammationandgutmicrobialdysbiosisaftercontinuousdevelopmentalexposuretotrichloroethyleneinautoimmunepronemice AT gokulankuppan sexdependenteffectsonliverinflammationandgutmicrobialdysbiosisaftercontinuousdevelopmentalexposuretotrichloroethyleneinautoimmunepronemice AT arnoldmatthew sexdependenteffectsonliverinflammationandgutmicrobialdysbiosisaftercontinuousdevelopmentalexposuretotrichloroethyleneinautoimmunepronemice AT kharesangeeta sexdependenteffectsonliverinflammationandgutmicrobialdysbiosisaftercontinuousdevelopmentalexposuretotrichloroethyleneinautoimmunepronemice |