Cargando…

Stable and efficient immobilization of bi-enzymatic NADPH cofactor recycling system under consecutive microwave irradiation

One of the challenges in biocatalysis is the development of stable and efficient bi-enzymatic cascades for bio-redox reactions coupled to the recycling of soluble cofactors. Aldo-keto reductase (LEK) and glucose dehydrogenase (GDH) can be utilized as the NADPH recycling system for economic and effic...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Rong, Wei, Qiuhui, Wei, Xin, Liu, Yuheng, Zhang, Xiaomin, Chen, Xiabin, Yin, Xiaopu, Xie, Tian
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7673530/
https://www.ncbi.nlm.nih.gov/pubmed/33206717
http://dx.doi.org/10.1371/journal.pone.0242564
Descripción
Sumario:One of the challenges in biocatalysis is the development of stable and efficient bi-enzymatic cascades for bio-redox reactions coupled to the recycling of soluble cofactors. Aldo-keto reductase (LEK) and glucose dehydrogenase (GDH) can be utilized as the NADPH recycling system for economic and efficient biocatalysis of (R)-4-chloro-3-hydroxybutanoate ((R)-CHBE), an important chiral pharmaceutical intermediate. The LEK and GDH was efficiently co-immobilized in mesocellular siliceous foams (MCFs) under microwave irradiation (CoLG-MIA). while they were also co-immobilized by entrapment in calcium alginate without MIA as control (CoLG-CA). The relative activity of CoLG-MIA was increased to 140% compared with that of free LEK. The CoLG-MIA exhibited a wider range of pH and temperature stabilities compared with other preparations. The thermal, storage and batch operational stabilities of microwave-assisted immobilized LEK-GDH were also improved. The NADPH recycling system exhibited the potential as the stable and efficient catalyst for the industrial preparation of (R)-CHBE.