Cargando…

Freshwater diatom biomonitoring through benthic kick-net metabarcoding

Biomonitoring is an essential tool for assessing ecological conditions and informing management strategies. The application of DNA metabarcoding and high throughput sequencing has improved data quantity and resolution for biomonitoring of taxa such as macroinvertebrates, yet, there remains the need...

Descripción completa

Detalles Bibliográficos
Autores principales: Maitland, Victoria Carley, Robinson, Chloe Victoria, Porter, Teresita M., Hajibabaei, Mehrdad
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7673570/
https://www.ncbi.nlm.nih.gov/pubmed/33206700
http://dx.doi.org/10.1371/journal.pone.0242143
Descripción
Sumario:Biomonitoring is an essential tool for assessing ecological conditions and informing management strategies. The application of DNA metabarcoding and high throughput sequencing has improved data quantity and resolution for biomonitoring of taxa such as macroinvertebrates, yet, there remains the need to optimise these methods for other taxonomic groups. Diatoms have a longstanding history in freshwater biomonitoring as bioindicators of water quality status. However, multi-substrate periphyton collection, a common diatom sampling practice, is time-consuming and thus costly in terms of labour. This study examined whether the benthic kick-net technique used for macroinvertebrate biomonitoring could be applied to bulk-sample diatoms for metabarcoding. To test this approach, we collected samples using both conventional multi-substrate microhabitat periphyton collections and bulk-tissue kick-net methodologies in parallel from replicated sites with different habitat status (good/fair). We found there was no significant difference in community assemblages between conventional periphyton collection and kick-net methodologies or site status, but there was significant difference between diatom communities depending on site (P = 0.042). These results show the diatom taxonomic coverage achieved through DNA metabarcoding of kick-net is suitable for ecological biomonitoring applications. The shift to a more robust sampling approach and capturing diatoms as well as macroinvertebrates in a single sampling event has the potential to significantly improve efficiency of biomonitoring programmes that currently only use the kick-net technique to sample macroinvertebrates.