Cargando…
3D tracking of extracellular vesicles by holographic fluorescence imaging
Fluorescence microscopy is the method of choice in biology for its molecular specificity and super-resolution capabilities. However, it is limited to a narrow z range around one observation plane. Here, we report an imaging approach that recovers the full electric field of fluorescent light with sin...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for the Advancement of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7673696/ https://www.ncbi.nlm.nih.gov/pubmed/33148645 http://dx.doi.org/10.1126/sciadv.abc2508 |
Sumario: | Fluorescence microscopy is the method of choice in biology for its molecular specificity and super-resolution capabilities. However, it is limited to a narrow z range around one observation plane. Here, we report an imaging approach that recovers the full electric field of fluorescent light with single-molecule sensitivity. We expand the principle of digital holography to fast fluorescent detection by eliminating the need for phase cycling and enable three-dimensional (3D) tracking of individual nanoparticles with an in-plane resolution of 15 nm and a z-range of 8 mm. As a proof-of-concept biological application, we image the 3D motion of extracellular vesicles (EVs) inside live cells. At short time scales (<4 s), we resolve near-isotropic 3D diffusion and directional transport. For longer lag times, we observe a transition toward anisotropic motion with the EVs being transported over long distances in the axial plane while being confined in the horizontal dimension. |
---|