Cargando…

Bayesian inference for biophysical neuron models enables stimulus optimization for retinal neuroprosthetics

While multicompartment models have long been used to study the biophysics of neurons, it is still challenging to infer the parameters of such models from data including uncertainty estimates. Here, we performed Bayesian inference for the parameters of detailed neuron models of a photoreceptor and an...

Descripción completa

Detalles Bibliográficos
Autores principales: Oesterle, Jonathan, Behrens, Christian, Schröder, Cornelius, Hermann, Thoralf, Euler, Thomas, Franke, Katrin, Smith, Robert G, Zeck, Günther, Berens, Philipp
Formato: Online Artículo Texto
Lenguaje:English
Publicado: eLife Sciences Publications, Ltd 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7673784/
https://www.ncbi.nlm.nih.gov/pubmed/33107821
http://dx.doi.org/10.7554/eLife.54997
_version_ 1783611388333129728
author Oesterle, Jonathan
Behrens, Christian
Schröder, Cornelius
Hermann, Thoralf
Euler, Thomas
Franke, Katrin
Smith, Robert G
Zeck, Günther
Berens, Philipp
author_facet Oesterle, Jonathan
Behrens, Christian
Schröder, Cornelius
Hermann, Thoralf
Euler, Thomas
Franke, Katrin
Smith, Robert G
Zeck, Günther
Berens, Philipp
author_sort Oesterle, Jonathan
collection PubMed
description While multicompartment models have long been used to study the biophysics of neurons, it is still challenging to infer the parameters of such models from data including uncertainty estimates. Here, we performed Bayesian inference for the parameters of detailed neuron models of a photoreceptor and an OFF- and an ON-cone bipolar cell from the mouse retina based on two-photon imaging data. We obtained multivariate posterior distributions specifying plausible parameter ranges consistent with the data and allowing to identify parameters poorly constrained by the data. To demonstrate the potential of such mechanistic data-driven neuron models, we created a simulation environment for external electrical stimulation of the retina and optimized stimulus waveforms to target OFF- and ON-cone bipolar cells, a current major problem of retinal neuroprosthetics.
format Online
Article
Text
id pubmed-7673784
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher eLife Sciences Publications, Ltd
record_format MEDLINE/PubMed
spelling pubmed-76737842020-11-23 Bayesian inference for biophysical neuron models enables stimulus optimization for retinal neuroprosthetics Oesterle, Jonathan Behrens, Christian Schröder, Cornelius Hermann, Thoralf Euler, Thomas Franke, Katrin Smith, Robert G Zeck, Günther Berens, Philipp eLife Computational and Systems Biology While multicompartment models have long been used to study the biophysics of neurons, it is still challenging to infer the parameters of such models from data including uncertainty estimates. Here, we performed Bayesian inference for the parameters of detailed neuron models of a photoreceptor and an OFF- and an ON-cone bipolar cell from the mouse retina based on two-photon imaging data. We obtained multivariate posterior distributions specifying plausible parameter ranges consistent with the data and allowing to identify parameters poorly constrained by the data. To demonstrate the potential of such mechanistic data-driven neuron models, we created a simulation environment for external electrical stimulation of the retina and optimized stimulus waveforms to target OFF- and ON-cone bipolar cells, a current major problem of retinal neuroprosthetics. eLife Sciences Publications, Ltd 2020-10-27 /pmc/articles/PMC7673784/ /pubmed/33107821 http://dx.doi.org/10.7554/eLife.54997 Text en © 2020, Oesterle et al http://creativecommons.org/licenses/by/4.0/ http://creativecommons.org/licenses/by/4.0/This article is distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use and redistribution provided that the original author and source are credited.
spellingShingle Computational and Systems Biology
Oesterle, Jonathan
Behrens, Christian
Schröder, Cornelius
Hermann, Thoralf
Euler, Thomas
Franke, Katrin
Smith, Robert G
Zeck, Günther
Berens, Philipp
Bayesian inference for biophysical neuron models enables stimulus optimization for retinal neuroprosthetics
title Bayesian inference for biophysical neuron models enables stimulus optimization for retinal neuroprosthetics
title_full Bayesian inference for biophysical neuron models enables stimulus optimization for retinal neuroprosthetics
title_fullStr Bayesian inference for biophysical neuron models enables stimulus optimization for retinal neuroprosthetics
title_full_unstemmed Bayesian inference for biophysical neuron models enables stimulus optimization for retinal neuroprosthetics
title_short Bayesian inference for biophysical neuron models enables stimulus optimization for retinal neuroprosthetics
title_sort bayesian inference for biophysical neuron models enables stimulus optimization for retinal neuroprosthetics
topic Computational and Systems Biology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7673784/
https://www.ncbi.nlm.nih.gov/pubmed/33107821
http://dx.doi.org/10.7554/eLife.54997
work_keys_str_mv AT oesterlejonathan bayesianinferenceforbiophysicalneuronmodelsenablesstimulusoptimizationforretinalneuroprosthetics
AT behrenschristian bayesianinferenceforbiophysicalneuronmodelsenablesstimulusoptimizationforretinalneuroprosthetics
AT schrodercornelius bayesianinferenceforbiophysicalneuronmodelsenablesstimulusoptimizationforretinalneuroprosthetics
AT hermannthoralf bayesianinferenceforbiophysicalneuronmodelsenablesstimulusoptimizationforretinalneuroprosthetics
AT eulerthomas bayesianinferenceforbiophysicalneuronmodelsenablesstimulusoptimizationforretinalneuroprosthetics
AT frankekatrin bayesianinferenceforbiophysicalneuronmodelsenablesstimulusoptimizationforretinalneuroprosthetics
AT smithrobertg bayesianinferenceforbiophysicalneuronmodelsenablesstimulusoptimizationforretinalneuroprosthetics
AT zeckgunther bayesianinferenceforbiophysicalneuronmodelsenablesstimulusoptimizationforretinalneuroprosthetics
AT berensphilipp bayesianinferenceforbiophysicalneuronmodelsenablesstimulusoptimizationforretinalneuroprosthetics