Cargando…
Bayesian inference for biophysical neuron models enables stimulus optimization for retinal neuroprosthetics
While multicompartment models have long been used to study the biophysics of neurons, it is still challenging to infer the parameters of such models from data including uncertainty estimates. Here, we performed Bayesian inference for the parameters of detailed neuron models of a photoreceptor and an...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
eLife Sciences Publications, Ltd
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7673784/ https://www.ncbi.nlm.nih.gov/pubmed/33107821 http://dx.doi.org/10.7554/eLife.54997 |
_version_ | 1783611388333129728 |
---|---|
author | Oesterle, Jonathan Behrens, Christian Schröder, Cornelius Hermann, Thoralf Euler, Thomas Franke, Katrin Smith, Robert G Zeck, Günther Berens, Philipp |
author_facet | Oesterle, Jonathan Behrens, Christian Schröder, Cornelius Hermann, Thoralf Euler, Thomas Franke, Katrin Smith, Robert G Zeck, Günther Berens, Philipp |
author_sort | Oesterle, Jonathan |
collection | PubMed |
description | While multicompartment models have long been used to study the biophysics of neurons, it is still challenging to infer the parameters of such models from data including uncertainty estimates. Here, we performed Bayesian inference for the parameters of detailed neuron models of a photoreceptor and an OFF- and an ON-cone bipolar cell from the mouse retina based on two-photon imaging data. We obtained multivariate posterior distributions specifying plausible parameter ranges consistent with the data and allowing to identify parameters poorly constrained by the data. To demonstrate the potential of such mechanistic data-driven neuron models, we created a simulation environment for external electrical stimulation of the retina and optimized stimulus waveforms to target OFF- and ON-cone bipolar cells, a current major problem of retinal neuroprosthetics. |
format | Online Article Text |
id | pubmed-7673784 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | eLife Sciences Publications, Ltd |
record_format | MEDLINE/PubMed |
spelling | pubmed-76737842020-11-23 Bayesian inference for biophysical neuron models enables stimulus optimization for retinal neuroprosthetics Oesterle, Jonathan Behrens, Christian Schröder, Cornelius Hermann, Thoralf Euler, Thomas Franke, Katrin Smith, Robert G Zeck, Günther Berens, Philipp eLife Computational and Systems Biology While multicompartment models have long been used to study the biophysics of neurons, it is still challenging to infer the parameters of such models from data including uncertainty estimates. Here, we performed Bayesian inference for the parameters of detailed neuron models of a photoreceptor and an OFF- and an ON-cone bipolar cell from the mouse retina based on two-photon imaging data. We obtained multivariate posterior distributions specifying plausible parameter ranges consistent with the data and allowing to identify parameters poorly constrained by the data. To demonstrate the potential of such mechanistic data-driven neuron models, we created a simulation environment for external electrical stimulation of the retina and optimized stimulus waveforms to target OFF- and ON-cone bipolar cells, a current major problem of retinal neuroprosthetics. eLife Sciences Publications, Ltd 2020-10-27 /pmc/articles/PMC7673784/ /pubmed/33107821 http://dx.doi.org/10.7554/eLife.54997 Text en © 2020, Oesterle et al http://creativecommons.org/licenses/by/4.0/ http://creativecommons.org/licenses/by/4.0/This article is distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use and redistribution provided that the original author and source are credited. |
spellingShingle | Computational and Systems Biology Oesterle, Jonathan Behrens, Christian Schröder, Cornelius Hermann, Thoralf Euler, Thomas Franke, Katrin Smith, Robert G Zeck, Günther Berens, Philipp Bayesian inference for biophysical neuron models enables stimulus optimization for retinal neuroprosthetics |
title | Bayesian inference for biophysical neuron models enables stimulus optimization for retinal neuroprosthetics |
title_full | Bayesian inference for biophysical neuron models enables stimulus optimization for retinal neuroprosthetics |
title_fullStr | Bayesian inference for biophysical neuron models enables stimulus optimization for retinal neuroprosthetics |
title_full_unstemmed | Bayesian inference for biophysical neuron models enables stimulus optimization for retinal neuroprosthetics |
title_short | Bayesian inference for biophysical neuron models enables stimulus optimization for retinal neuroprosthetics |
title_sort | bayesian inference for biophysical neuron models enables stimulus optimization for retinal neuroprosthetics |
topic | Computational and Systems Biology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7673784/ https://www.ncbi.nlm.nih.gov/pubmed/33107821 http://dx.doi.org/10.7554/eLife.54997 |
work_keys_str_mv | AT oesterlejonathan bayesianinferenceforbiophysicalneuronmodelsenablesstimulusoptimizationforretinalneuroprosthetics AT behrenschristian bayesianinferenceforbiophysicalneuronmodelsenablesstimulusoptimizationforretinalneuroprosthetics AT schrodercornelius bayesianinferenceforbiophysicalneuronmodelsenablesstimulusoptimizationforretinalneuroprosthetics AT hermannthoralf bayesianinferenceforbiophysicalneuronmodelsenablesstimulusoptimizationforretinalneuroprosthetics AT eulerthomas bayesianinferenceforbiophysicalneuronmodelsenablesstimulusoptimizationforretinalneuroprosthetics AT frankekatrin bayesianinferenceforbiophysicalneuronmodelsenablesstimulusoptimizationforretinalneuroprosthetics AT smithrobertg bayesianinferenceforbiophysicalneuronmodelsenablesstimulusoptimizationforretinalneuroprosthetics AT zeckgunther bayesianinferenceforbiophysicalneuronmodelsenablesstimulusoptimizationforretinalneuroprosthetics AT berensphilipp bayesianinferenceforbiophysicalneuronmodelsenablesstimulusoptimizationforretinalneuroprosthetics |