Cargando…
EC-PGMGR: Ensemble Clustering Based on Probability Graphical Model With Graph Regularization for Single-Cell RNA-seq Data
Advances in technology have made it convenient to obtain a large amount of single cell RNA sequencing (scRNA-seq) data. Since that clustering is a very important step in identifying or defining cellular phenotypes, many clustering approaches have been developed recently for these applications. The g...
Autores principales: | Zhu, Yuan, Zhang, De-Xin, Zhang, Xiao-Fei, Yi, Ming, Ou-Yang, Le, Wu, Mengyun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7673820/ https://www.ncbi.nlm.nih.gov/pubmed/33329710 http://dx.doi.org/10.3389/fgene.2020.572242 |
Ejemplares similares
-
Sc-GPE: A Graph Partitioning-Based Cluster Ensemble Method for Single-Cell
por: Zhu, Xiaoshu, et al.
Publicado: (2020) -
Clustering Single-Cell RNA-Seq Data with Regularized Gaussian Graphical Model
por: Liu, Zhenqiu
Publicado: (2021) -
Non-Negative Symmetric Low-Rank Representation Graph Regularized Method for Cancer Clustering Based on Score Function
por: Lu, Conghai, et al.
Publicado: (2020) -
Single-cell RNA-seq data analysis using graph autoencoders and graph attention networks
por: Feng, Xiang, et al.
Publicado: (2022) -
Zero-symmetric graphs: trivalent graphical regular representations of groups
por: Coxeter, H S M, et al.
Publicado: (1981)