Cargando…

In-situ Simulation Use for Rapid Implementation and Process Improvement of COVID-19 Airway Management

INTRODUCTION: The coronavirus disease 2019 (COVID-19) pandemic presents unique challenges to frontline healthcare workers. In order to safely care for patients new processes, such as a plan for the airway management of a patient with COVID-19, must be implemented and disseminated in a rapid fashion....

Descripción completa

Detalles Bibliográficos
Autores principales: Munzer, Brendan W., Bassin, Benjamin S., Peterson, William J., Tucker, Ryan V., Doan, Jessica, Harvey, Carrie, Sefa, Nana, Hsu, Cindy H.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Department of Emergency Medicine, University of California, Irvine School of Medicine 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7673893/
https://www.ncbi.nlm.nih.gov/pubmed/33052819
http://dx.doi.org/10.5811/westjem.2020.7.48159
Descripción
Sumario:INTRODUCTION: The coronavirus disease 2019 (COVID-19) pandemic presents unique challenges to frontline healthcare workers. In order to safely care for patients new processes, such as a plan for the airway management of a patient with COVID-19, must be implemented and disseminated in a rapid fashion. The use of in-situ simulation has been used to assist in latent problem identification as part of a Plan-Do-Study-Act cycle. Additionally, simulation is an effective means for training teams to perform high-risk procedures before engaging in the actual procedure. This educational advance seeks to use and study in-situ simulation as a means to rapidly implement a process for airway management in patients with COVID-19. METHODS: Using an airway algorithm developed by the authors, we designed an in-situ simulation scenario to train physicians, nurses, and respiratory therapists in best practices for airway management of patients with COVID-19. Physician participants were surveyed using a five-point Likert scale with regard to their comfort level with various aspects of the airway algorithm both before and after the simulation in a retrospective fashion. Additionally, we obtained feedback from all participants and used it to refine the airway algorithm. RESULTS: Over a two-week period, 93 physicians participated in the simulation. We received 81 responses to the survey (87%), which showed that the average level of comfort with personal protective equipment procedures increased significantly from 2.94 (95% confidence interval, 2.71–3.17) to 4.36 (4.24–4.48), a difference of 1.42 (1.20–1.63, p < 0.001). There was a significant increase in average comfort level in understanding the physician role with scores increasing from 3.51 (3.26–3.77) to 4.55 (2.71–3.17), a difference of 1.04 (0.82–1.25, p < 0.001). There was also increased comfort in performing procedural tasks such as intubation, from 3.08 (2.80–3.35) to 4.38 (4.23–4.52) after the simulation, a difference of 1.30 points (1.06–1.54, p < 0.001). Feedback from the participants also led to refinement of the airway algorithm. CONCLUSION: We successfully implemented a new airway management guideline for patients with suspected COVID-19. In-situ simulation is an essential tool for both dissemination and onboarding, as well as process improvement, in the context of an epidemic or pandemic.