Cargando…
sEMG-Based Neural Network Prediction Model Selection of Gesture Fatigue and Dataset Optimization
The fatigue energy consumption of independent gestures can be obtained by calculating the power spectrum of surface electromyography (sEMG) signals. The existing research studies focus on the fatigue of independent gestures, while the research studies on integrated gestures are few. However, the act...
Autores principales: | Ma, Fujun, Song, Fanghao, Liu, Yan, Niu, Jiahui |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7673936/ https://www.ncbi.nlm.nih.gov/pubmed/33224188 http://dx.doi.org/10.1155/2020/8853314 |
Ejemplares similares
-
sEMG-Based Hand Gesture Recognition Using Binarized Neural Network
por: Kang, Soongyu, et al.
Publicado: (2023) -
Dataset for multi-channel surface electromyography (sEMG) signals of hand gestures
por: Ozdemir, Mehmet Akif, et al.
Publicado: (2022) -
Simultaneous sEMG Classification of Hand/Wrist Gestures and Forces
por: Leone, Francesca, et al.
Publicado: (2019) -
sEMG-Based Gesture Classifier for a Rehabilitation Glove
por: Copaci, Dorin, et al.
Publicado: (2022) -
sEMG dataset of routine activities
por: Khan, Asad Mansoor, et al.
Publicado: (2020)