Cargando…
Machine learning to predict mortality after rehabilitation among patients with severe stroke
Stroke is among the leading causes of death and disability worldwide. Approximately 20–25% of stroke survivors present severe disability, which is associated with increased mortality risk. Prognostication is inherent in the process of clinical decision-making. Machine learning (ML) methods have gain...
Autores principales: | Scrutinio, Domenico, Ricciardi, Carlo, Donisi, Leandro, Losavio, Ernesto, Battista, Petronilla, Guida, Pietro, Cesarelli, Mario, Pagano, Gaetano, D’Addio, Giovanni |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7674405/ https://www.ncbi.nlm.nih.gov/pubmed/33208913 http://dx.doi.org/10.1038/s41598-020-77243-3 |
Ejemplares similares
-
Sex Differences in Long-Term Mortality and Functional Outcome After Rehabilitation in Patients With Severe Stroke
por: Scrutinio, Domenico, et al.
Publicado: (2020) -
The E-Textile for Biomedical Applications: A Systematic Review of Literature
por: Cesarelli, Giuseppe, et al.
Publicado: (2021) -
A Machine Learning Approach to Predict the Rehabilitation Outcome in Convalescent COVID-19 Patients
por: Adamo, Sarah, et al.
Publicado: (2022) -
Design and Validation of an E-Textile-Based Wearable Sock for Remote Gait and Postural Assessment
por: Amitrano, Federica, et al.
Publicado: (2020) -
Reducing the Healthcare-Associated Infections in a Rehabilitation Hospital under the Guidance of Lean Six Sigma and DMAIC
por: Cesarelli, Giuseppe, et al.
Publicado: (2021)