Cargando…

Motor learning in real-world pool billiards

The neurobehavioral mechanisms of human motor-control and learning evolved in free behaving, real-life settings, yet this is studied mostly in reductionistic lab-based experiments. Here we take a step towards a more real-world motor neuroscience using wearables for naturalistic full-body motion-trac...

Descripción completa

Detalles Bibliográficos
Autores principales: Haar, Shlomi, van Assel, Camille M., Faisal, A. Aldo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7674448/
https://www.ncbi.nlm.nih.gov/pubmed/33208785
http://dx.doi.org/10.1038/s41598-020-76805-9
Descripción
Sumario:The neurobehavioral mechanisms of human motor-control and learning evolved in free behaving, real-life settings, yet this is studied mostly in reductionistic lab-based experiments. Here we take a step towards a more real-world motor neuroscience using wearables for naturalistic full-body motion-tracking and the sports of pool billiards to frame a real-world skill learning experiment. First, we asked if well-known features of motor learning in lab-based experiments generalize to a real-world task. We found similarities in many features such as multiple learning rates, and the relationship between task-related variability and motor learning. Our data-driven approach reveals the structure and complexity of movement, variability, and motor learning, enabling an in-depth understanding of the structure of motor learning in three ways: First, while expecting most of the movement learning is done by the cue-wielding arm, we find that motor learning affects the whole body, changing motor-control from head to toe. Second, during learning, all subjects decreased their movement variability and their variability in the outcome. Subjects who were initially more variable were also more variable after learning. Lastly, when screening the link across subjects between initial variability in individual joints and learning, we found that only the initial variability in the right forearm supination shows a significant correlation to the subjects’ learning rates. This is in-line with the relationship between learning and variability: while learning leads to an overall reduction in movement variability, only initial variability in specific task-relevant dimensions can facilitate faster learning.