Cargando…

Reduced accuracy of MRI deep grey matter segmentation in multiple sclerosis: an evaluation of four automated methods against manual reference segmentations in a multi-center cohort

BACKGROUND: Deep grey matter (DGM) atrophy in multiple sclerosis (MS) and its relation to cognitive and clinical decline requires accurate measurements. MS pathology may deteriorate the performance of automated segmentation methods. Accuracy of DGM segmentation methods is compared between MS and con...

Descripción completa

Detalles Bibliográficos
Autores principales: de Sitter, Alexandra, Verhoeven, Tom, Burggraaff, Jessica, Liu, Yaou, Simoes, Jorge, Ruggieri, Serena, Palotai, Miklos, Brouwer, Iman, Versteeg, Adriaan, Wottschel, Viktor, Ropele, Stefan, Rocca, Mara A., Gasperini, Claudio, Gallo, Antonio, Yiannakas, Marios C., Rovira, Alex, Enzinger, Christian, Filippi, Massimo, De Stefano, Nicola, Kappos, Ludwig, Frederiksen, Jette L., Uitdehaag, Bernard M. J., Barkhof, Frederik, Guttmann, Charles R. G., Vrenken, Hugo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7674567/
https://www.ncbi.nlm.nih.gov/pubmed/32621103
http://dx.doi.org/10.1007/s00415-020-10023-1
_version_ 1783611530514792448
author de Sitter, Alexandra
Verhoeven, Tom
Burggraaff, Jessica
Liu, Yaou
Simoes, Jorge
Ruggieri, Serena
Palotai, Miklos
Brouwer, Iman
Versteeg, Adriaan
Wottschel, Viktor
Ropele, Stefan
Rocca, Mara A.
Gasperini, Claudio
Gallo, Antonio
Yiannakas, Marios C.
Rovira, Alex
Enzinger, Christian
Filippi, Massimo
De Stefano, Nicola
Kappos, Ludwig
Frederiksen, Jette L.
Uitdehaag, Bernard M. J.
Barkhof, Frederik
Guttmann, Charles R. G.
Vrenken, Hugo
author_facet de Sitter, Alexandra
Verhoeven, Tom
Burggraaff, Jessica
Liu, Yaou
Simoes, Jorge
Ruggieri, Serena
Palotai, Miklos
Brouwer, Iman
Versteeg, Adriaan
Wottschel, Viktor
Ropele, Stefan
Rocca, Mara A.
Gasperini, Claudio
Gallo, Antonio
Yiannakas, Marios C.
Rovira, Alex
Enzinger, Christian
Filippi, Massimo
De Stefano, Nicola
Kappos, Ludwig
Frederiksen, Jette L.
Uitdehaag, Bernard M. J.
Barkhof, Frederik
Guttmann, Charles R. G.
Vrenken, Hugo
author_sort de Sitter, Alexandra
collection PubMed
description BACKGROUND: Deep grey matter (DGM) atrophy in multiple sclerosis (MS) and its relation to cognitive and clinical decline requires accurate measurements. MS pathology may deteriorate the performance of automated segmentation methods. Accuracy of DGM segmentation methods is compared between MS and controls, and the relation of performance with lesions and atrophy is studied. METHODS: On images of 21 MS subjects and 11 controls, three raters manually outlined caudate nucleus, putamen and thalamus; outlines were combined by majority voting. FSL-FIRST, FreeSurfer, Geodesic Information Flow and volBrain were evaluated. Performance was evaluated volumetrically (intra-class correlation coefficient (ICC)) and spatially (Dice similarity coefficient (DSC)). Spearman's correlations of DSC with global and local lesion volume, structure of interest volume (ROIV), and normalized brain volume (NBV) were assessed. RESULTS: ICC with manual volumes was mostly good and spatial agreement was high. MS exhibited significantly lower DSC than controls for thalamus and putamen. For some combinations of structure and method, DSC correlated negatively with lesion volume or positively with NBV or ROIV. Lesion-filling did not substantially change segmentations. CONCLUSIONS: Automated methods have impaired performance in patients. Performance generally deteriorated with higher lesion volume and lower NBV and ROIV, suggesting that these may contribute to the impaired performance. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1007/s00415-020-10023-1) contains supplementary material, which is available to authorized users.
format Online
Article
Text
id pubmed-7674567
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Springer Berlin Heidelberg
record_format MEDLINE/PubMed
spelling pubmed-76745672020-11-30 Reduced accuracy of MRI deep grey matter segmentation in multiple sclerosis: an evaluation of four automated methods against manual reference segmentations in a multi-center cohort de Sitter, Alexandra Verhoeven, Tom Burggraaff, Jessica Liu, Yaou Simoes, Jorge Ruggieri, Serena Palotai, Miklos Brouwer, Iman Versteeg, Adriaan Wottschel, Viktor Ropele, Stefan Rocca, Mara A. Gasperini, Claudio Gallo, Antonio Yiannakas, Marios C. Rovira, Alex Enzinger, Christian Filippi, Massimo De Stefano, Nicola Kappos, Ludwig Frederiksen, Jette L. Uitdehaag, Bernard M. J. Barkhof, Frederik Guttmann, Charles R. G. Vrenken, Hugo J Neurol Original Communication BACKGROUND: Deep grey matter (DGM) atrophy in multiple sclerosis (MS) and its relation to cognitive and clinical decline requires accurate measurements. MS pathology may deteriorate the performance of automated segmentation methods. Accuracy of DGM segmentation methods is compared between MS and controls, and the relation of performance with lesions and atrophy is studied. METHODS: On images of 21 MS subjects and 11 controls, three raters manually outlined caudate nucleus, putamen and thalamus; outlines were combined by majority voting. FSL-FIRST, FreeSurfer, Geodesic Information Flow and volBrain were evaluated. Performance was evaluated volumetrically (intra-class correlation coefficient (ICC)) and spatially (Dice similarity coefficient (DSC)). Spearman's correlations of DSC with global and local lesion volume, structure of interest volume (ROIV), and normalized brain volume (NBV) were assessed. RESULTS: ICC with manual volumes was mostly good and spatial agreement was high. MS exhibited significantly lower DSC than controls for thalamus and putamen. For some combinations of structure and method, DSC correlated negatively with lesion volume or positively with NBV or ROIV. Lesion-filling did not substantially change segmentations. CONCLUSIONS: Automated methods have impaired performance in patients. Performance generally deteriorated with higher lesion volume and lower NBV and ROIV, suggesting that these may contribute to the impaired performance. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1007/s00415-020-10023-1) contains supplementary material, which is available to authorized users. Springer Berlin Heidelberg 2020-07-03 2020 /pmc/articles/PMC7674567/ /pubmed/32621103 http://dx.doi.org/10.1007/s00415-020-10023-1 Text en © The Author(s) 2020 Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Original Communication
de Sitter, Alexandra
Verhoeven, Tom
Burggraaff, Jessica
Liu, Yaou
Simoes, Jorge
Ruggieri, Serena
Palotai, Miklos
Brouwer, Iman
Versteeg, Adriaan
Wottschel, Viktor
Ropele, Stefan
Rocca, Mara A.
Gasperini, Claudio
Gallo, Antonio
Yiannakas, Marios C.
Rovira, Alex
Enzinger, Christian
Filippi, Massimo
De Stefano, Nicola
Kappos, Ludwig
Frederiksen, Jette L.
Uitdehaag, Bernard M. J.
Barkhof, Frederik
Guttmann, Charles R. G.
Vrenken, Hugo
Reduced accuracy of MRI deep grey matter segmentation in multiple sclerosis: an evaluation of four automated methods against manual reference segmentations in a multi-center cohort
title Reduced accuracy of MRI deep grey matter segmentation in multiple sclerosis: an evaluation of four automated methods against manual reference segmentations in a multi-center cohort
title_full Reduced accuracy of MRI deep grey matter segmentation in multiple sclerosis: an evaluation of four automated methods against manual reference segmentations in a multi-center cohort
title_fullStr Reduced accuracy of MRI deep grey matter segmentation in multiple sclerosis: an evaluation of four automated methods against manual reference segmentations in a multi-center cohort
title_full_unstemmed Reduced accuracy of MRI deep grey matter segmentation in multiple sclerosis: an evaluation of four automated methods against manual reference segmentations in a multi-center cohort
title_short Reduced accuracy of MRI deep grey matter segmentation in multiple sclerosis: an evaluation of four automated methods against manual reference segmentations in a multi-center cohort
title_sort reduced accuracy of mri deep grey matter segmentation in multiple sclerosis: an evaluation of four automated methods against manual reference segmentations in a multi-center cohort
topic Original Communication
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7674567/
https://www.ncbi.nlm.nih.gov/pubmed/32621103
http://dx.doi.org/10.1007/s00415-020-10023-1
work_keys_str_mv AT desitteralexandra reducedaccuracyofmrideepgreymattersegmentationinmultiplesclerosisanevaluationoffourautomatedmethodsagainstmanualreferencesegmentationsinamulticentercohort
AT verhoeventom reducedaccuracyofmrideepgreymattersegmentationinmultiplesclerosisanevaluationoffourautomatedmethodsagainstmanualreferencesegmentationsinamulticentercohort
AT burggraaffjessica reducedaccuracyofmrideepgreymattersegmentationinmultiplesclerosisanevaluationoffourautomatedmethodsagainstmanualreferencesegmentationsinamulticentercohort
AT liuyaou reducedaccuracyofmrideepgreymattersegmentationinmultiplesclerosisanevaluationoffourautomatedmethodsagainstmanualreferencesegmentationsinamulticentercohort
AT simoesjorge reducedaccuracyofmrideepgreymattersegmentationinmultiplesclerosisanevaluationoffourautomatedmethodsagainstmanualreferencesegmentationsinamulticentercohort
AT ruggieriserena reducedaccuracyofmrideepgreymattersegmentationinmultiplesclerosisanevaluationoffourautomatedmethodsagainstmanualreferencesegmentationsinamulticentercohort
AT palotaimiklos reducedaccuracyofmrideepgreymattersegmentationinmultiplesclerosisanevaluationoffourautomatedmethodsagainstmanualreferencesegmentationsinamulticentercohort
AT brouweriman reducedaccuracyofmrideepgreymattersegmentationinmultiplesclerosisanevaluationoffourautomatedmethodsagainstmanualreferencesegmentationsinamulticentercohort
AT versteegadriaan reducedaccuracyofmrideepgreymattersegmentationinmultiplesclerosisanevaluationoffourautomatedmethodsagainstmanualreferencesegmentationsinamulticentercohort
AT wottschelviktor reducedaccuracyofmrideepgreymattersegmentationinmultiplesclerosisanevaluationoffourautomatedmethodsagainstmanualreferencesegmentationsinamulticentercohort
AT ropelestefan reducedaccuracyofmrideepgreymattersegmentationinmultiplesclerosisanevaluationoffourautomatedmethodsagainstmanualreferencesegmentationsinamulticentercohort
AT roccamaraa reducedaccuracyofmrideepgreymattersegmentationinmultiplesclerosisanevaluationoffourautomatedmethodsagainstmanualreferencesegmentationsinamulticentercohort
AT gasperiniclaudio reducedaccuracyofmrideepgreymattersegmentationinmultiplesclerosisanevaluationoffourautomatedmethodsagainstmanualreferencesegmentationsinamulticentercohort
AT galloantonio reducedaccuracyofmrideepgreymattersegmentationinmultiplesclerosisanevaluationoffourautomatedmethodsagainstmanualreferencesegmentationsinamulticentercohort
AT yiannakasmariosc reducedaccuracyofmrideepgreymattersegmentationinmultiplesclerosisanevaluationoffourautomatedmethodsagainstmanualreferencesegmentationsinamulticentercohort
AT roviraalex reducedaccuracyofmrideepgreymattersegmentationinmultiplesclerosisanevaluationoffourautomatedmethodsagainstmanualreferencesegmentationsinamulticentercohort
AT enzingerchristian reducedaccuracyofmrideepgreymattersegmentationinmultiplesclerosisanevaluationoffourautomatedmethodsagainstmanualreferencesegmentationsinamulticentercohort
AT filippimassimo reducedaccuracyofmrideepgreymattersegmentationinmultiplesclerosisanevaluationoffourautomatedmethodsagainstmanualreferencesegmentationsinamulticentercohort
AT destefanonicola reducedaccuracyofmrideepgreymattersegmentationinmultiplesclerosisanevaluationoffourautomatedmethodsagainstmanualreferencesegmentationsinamulticentercohort
AT kapposludwig reducedaccuracyofmrideepgreymattersegmentationinmultiplesclerosisanevaluationoffourautomatedmethodsagainstmanualreferencesegmentationsinamulticentercohort
AT frederiksenjettel reducedaccuracyofmrideepgreymattersegmentationinmultiplesclerosisanevaluationoffourautomatedmethodsagainstmanualreferencesegmentationsinamulticentercohort
AT uitdehaagbernardmj reducedaccuracyofmrideepgreymattersegmentationinmultiplesclerosisanevaluationoffourautomatedmethodsagainstmanualreferencesegmentationsinamulticentercohort
AT barkhoffrederik reducedaccuracyofmrideepgreymattersegmentationinmultiplesclerosisanevaluationoffourautomatedmethodsagainstmanualreferencesegmentationsinamulticentercohort
AT guttmanncharlesrg reducedaccuracyofmrideepgreymattersegmentationinmultiplesclerosisanevaluationoffourautomatedmethodsagainstmanualreferencesegmentationsinamulticentercohort
AT vrenkenhugo reducedaccuracyofmrideepgreymattersegmentationinmultiplesclerosisanevaluationoffourautomatedmethodsagainstmanualreferencesegmentationsinamulticentercohort
AT reducedaccuracyofmrideepgreymattersegmentationinmultiplesclerosisanevaluationoffourautomatedmethodsagainstmanualreferencesegmentationsinamulticentercohort