Cargando…
Analysis of Smartphone Recordings in Time, Frequency, and Cepstral Domains to Classify Parkinson’s Disease
OBJECTIVES: Parkinson’s disease (PD) is the second most common neurodegenerative disorder; it affects more than 10 million people worldwide. Detecting PD usually requires a professional assessment by an expert, and investigation of the voice as a biomarker of the disease could be effective in speedi...
Autores principales: | Tougui, Ilias, Jilbab, Abdelilah, El Mhamdi, Jamal |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Korean Society of Medical Informatics
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7674819/ https://www.ncbi.nlm.nih.gov/pubmed/33190461 http://dx.doi.org/10.4258/hir.2020.26.4.274 |
Ejemplares similares
-
Machine Learning Smart System for Parkinson Disease Classification Using the Voice as a Biomarker
por: Tougui, Ilias, et al.
Publicado: (2022) -
Impact of the Choice of Cross-Validation Techniques on the Results of Machine Learning-Based Diagnostic Applications
por: Tougui, Ilias, et al.
Publicado: (2021) -
Neurogenerative Disease Diagnosis in Cepstral Domain Using MFCC with Deep Learning
por: Alghamdi, Norah Saleh, et al.
Publicado: (2022) -
Cepstral Analysis of Voice in Patients With Thyroidectomy
por: Shin, Yu Jeong, et al.
Publicado: (2016) -
Voice Disorder Classification Based on Multitaper Mel Frequency Cepstral Coefficients Features
por: Eskidere, Ömer, et al.
Publicado: (2015)